Preview

Dependence of polyethylene combustion dynamics in a 1 m3 chamber on particle size

https://doi.org/10.22227/0869-7493.2022.31.06.6-12

Abstract

Introduction. The results of a standard study on the explosion hazard of polyethylene air suspensions (PES) can contribute to the theory of turbulent combustion. For example, analysis of polydispersity data and values of the PES lean combustion limit in a 1 m3 chamber helped to identify the maximum size of explosive particles d*m,t ≈ 100 µm (Poletaev, 2014). In this work, a relationship was obtained between the dynamics of PES combustion in a 1 m3 chamber and the average particle size of the suspension, which is understood as the average particle size of its explosive fraction d*50.

Initial data. Well-known findings of a study on the explosion of 28 polyethylene specimens in a 1 m3 chamber were used. Continuous functions of specimen particles distribution by size, necessary for calculating d*50, were represented using the Rosin-Rammler distribution.

Combustion dynamics. The dynamics of PES turbulent combustion in a 1 m3 chamber is described by the maximum rate of air suspension burnout Ub. Ub was calculated according to the formula (Kumar, 1992) intended for gas-air mixtures by substituting PES explosion parameters into this formula.

Results and its discussion. The graph, describing the dependence of the complex d*50Ub on d*50, is provided. The averaged value of the complex (≈ 45 µm · (m/s)) is constant in the range 40 µm < d*50 < 90 µm. The latter is typical for the product of the particle size and the normal velocity of laminar flame in liquid aerosols (Myers, 1986), which indicates similarity between the effect of particle dispersion and dynamics of turbulent and laminar combustion of the aforementioned heterogeneous mixtures.

Conclusions. The dispersive capacity of an explosive polydisperse polyethylene specimen is determined by the average particle size of the explosive fraction of the specimen d*50. The similarity of combustion patterns indicates the proximity of propagation mechanisms typical for turbulent flame, typical for PES, and laminar flame, typical for liquid aerosols.

About the Author

N. L. Poletaev
All-Russian Research Institute for Fire Protection of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters
Russian Federation

Nikolay L. POLETAEV, Dr. Sci. (Eng.), Leading Researcher

VNIIPO, 12, Balashikha, Moscow Region, 143903

ID RISC:1093620



References

1. Eckhoff R.K. Dust explosions in the process industries. 3rd ed. Boston, Gulf Professional Publishing/ Elsevier, 2003; 720.

2. Butlin R.N. Polyethylene dust-air flames. Combustion and Flame. 1971; 17(3):446-448. DOI: 10.1016/s0010-2180(71)80071-8

3. Pang L., Cao J., Ma R., Zhao Y., Yang K. Risk assessment method of polyethylene dust explosion based on explosion parameters. Journal of Loss Prevention in the Process Industries. 2021; 69:104397. DOI: 10.1016/j.jlp.2021.104397

4. Wang Y., Lin C., Qi Y., Pei B., Wang L., Ji W. Suppression of polyethylene dust explosion by sodium bicarbonate. Powder Technology. 2020; 367:206-212. DOI: 10.1016/j.powtec.2020.03.049

5. Kazmi M.Z. Experimental study of polyethylene and sulfur dust explosion characteristics. Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of master of science. 2018; 153. URL: https://core.ac.uk/download/pdf/187126901.pdf

6. Poletaev N.L. Experiment-calculated estimating of the maximum particle size of explosive monodisperse dust-air mixture. Pozharovzryvobezo pasnost/ Fire and Explosion Safety. 2014; 23(9):15-26. DOI: 10.18322/PVB.2014.23.09.15-26 (rus).

7. Hertzberg M., Cashdollar K.L., Ng D.L., Conti R.S. Domains of flammability and thermal ignitability for pulverized coals and other dusts: Particle size dependences and microscopic residue analyses. Symposium (International) on Combustion. 1982; 19(1):1169-1180. DOI: 10.1016/s0082-0784(82)80293-2

8. Poletaev N.L. Particle size influence on the aluminum combustion dynamics in 1-m3 chamber. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2022; 31(5): 5-12. DOI: 10.22227/0869-7493.2022.31.05.5-12 (rus).

9. Gan B., Gao W., Jiang H., Li Y., Zhang Q., Bi M. Flame propagation behaviors and temperature characteristics in polyethylene dust explosions. Powder Technology. 2018; 328:345-357. DOI: 10.1016/j.powtec.2018.01.061

10. Pang L., Zhao Y., Yang K., Zhai H., Lv P., Sun S. Law of variation for low density polyethylene dust explosion with different inert gases. Journal of Loss Prevention in the Process Industries. 2019; 58:42-50. DOI: 10.1016/j.jlp.2019.01.009

11. Santandrea A., Pacault S., Perrin L., Vignes A., Dufaud O. Nanopowders explosion: Influence of the dispersion characteristics. Journal of Loss Prevention in the Process Industries. 2019; 62:103942. DOI: 10.1016/j.jlp.2019.103942

12. Tascon A. Influence of particle size distribution skewness on dust explosibility. Powder Technology. 2018; 338:438-445. DOI: 10.1016/j.powtec.2018.07.044

13. Scholl E.W., Reeh D., Wiemann W. et al. Brenn – und Explosions – Kenngrossen von Stauben. SFT­Report. 2; 2 79:100. (ger).

14. Kouzov P.A. Fundamentals of the analysis of the disperse composition of industrial dusts and crushed materials. 3th ed. Leningrad, Himiya Publ., 1987; 264. (rus).

15. Kumar R.K., Bowles E.M., Mintz K.J. Large-scale dust explosions experiments to determine the effects of scaling on explosion parameters. Combustion and Flame. 1992; 89:320-332. DOI: 10.1016/0010-2180(92)90018-K

16. Ballal D.R. Flame propagation through dust clouds of carbon, coal, aluminium and magnesiumin an environmentof zero gravity. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1983; 385(1788):21-51. DOI: 10.1098/rspa.1983.0003

17. Sun P., Wu C., Zhu F., Wang S., Huang X. Microgravity combustion of polyethylene droplet in drop tower. Combustion and Flame. 2020; 222:18-26. DOI: 10.1016/j.combustflame.2020.08.032

18. Myers G.D., Lefebvre A.H. Flame propagation in heterogeneous mixtures of fuel drops and air. Combustion and Flame. 1986; 66(2):193-210. DOI: 10.1016/00102180(86)90091-x

19. Ballal D.R., Lefebvre A.H. Flame propagation in heterogeneous mixtures of fuel droplets, fuel vapor and air. Symposium (International) on Combustion. 1981; 18(1):321-328. DOI: 10.1016/S0082-0784(81)80037-9

20. Fan L., Tian B., Chong C.T., Jaafar M.N.M., Tanno K., McGrath D. et al. The effect of fine droplets on laminar propagation speed of a strained acetone-methane flame: experiment and simulations. Combustion and Flame. 2021; 229:111377. DOI: 10.1016/j.combustflame.2021.02.023


Review

For citations:


Poletaev N.L. Dependence of polyethylene combustion dynamics in a 1 m3 chamber on particle size. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2022;31(6):6-12. (In Russ.) https://doi.org/10.22227/0869-7493.2022.31.06.6-12

Views: 296


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)