Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Aspects of implementation of automatic fire containment systems

https://doi.org/10.22227/0869-7493.2022.31.05.43-53

Abstract

Introduction. The authors specify the areas of application of automatic fire-prevention systems and the objects that they protect; they also substantiate the main principles of their design and development. Rational hydraulic sprinkler arrangement patterns are designed for automatic water fire-containment systems to be installed in large and small premises, depending on the thermal loading of structures.

Goal and objectives. Development of recommendations on the use of automatic fire-containment systems and the objects that they protect.

Materials and methods. Fire development patterns were subjected to theoretical and experimental research conducted during variable intensity water supply.

Results and their discussion. As a result of this research, general engineering requirements for automatic water fire-containment systems and their testing methods were first developed.

Conclusions. The first edition of GOST (All-Russian State Standard) “Automatic water fire-containment systems. General engineering requirements. Testing methods” were addressed to the organizations concerned with this area of knowledge; their opinions and suggestions were contributed to another approved edition of this GOST (All-Russian State Standard).

About the Authors

L. T. Tanklevskiy
Peter the Great St. Petersburg Polytechnic University; Saint-Petersburg University of State Fire Service of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Leonid T. TANKLEVSKIY, Dr. Sci. (Eng.), Professor, Head of Department of Higher School of Technosphere Safety; Chief Researcher

Polytechni­ cheskaya St., 29, Saint Petersburg, 195251

Moskovskiy Avenue, 149, Saint Petersburg, 196105

ID RISC: 181476; Scopus Author ID: 57192367552; ResearcherID: S­1901­2017



A. A. Tarantsev
Saint-Petersburg University of State Fire Service of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters; Solomenko Institute of Transport Problems of the Russian Academy of Sciences
Russian Federation

Alexander A. TARANTSEV, Dr. Sci. (Eng.), Professor, Head of Laboratory; Professor

12­th Line VO, 13, Saint Petersburg, 199178

Moskovskiy Avenue, 149, Saint Petersburg, 196105

ID RISC: 664653; Scopus Author ID: 57195636448; ResearcherID: K­2087­2018



A. I. Bondar
Department of Educational and Scientific and Technical Activities of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Alexandеr I. BONDAR, Cand. Sci. (Eng.), Associate Professor

Davydkovskaya St., 7, Moscow, 121352



I. D. Balabanov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Ivan D. BALABANOV, Postgraduate Student

Polytechnicheskaya St., 29, Saint Petersburg, 195251

ID RISC: 980446; Scopus Author ID: 57212561809; ResearcherID: GQH­8479­2022



References

1. Bondar A.I., Meshalkin E.A., Tanklevsky L.T., Tarantsev A.A., Tsarichenko S.G. About features of application of automatic fire containment installations. Pozharovzryvobezopasnost/Fire and Ex- plosion Safety. 2019; 28(6):71­79. DOI: 10.18322/PVB.2019.28.06.71­79 (rus).

2. Zybina O.A., Tanklevsky L.T., Tarantsev A.A. On the problem of development of automatic fire containment systems. Problems of Risk Management in the Technosphere. 2019; 4(52):67­72. URL: https://elibrary.ru/item.asp?id=41807858 (rus).

3. Povzik Ya.S. Fire tactics. Moscow, CJSC “Spetstekhnika” Publ., 2004; 416. (rus).

4. Terebnev V.V., Podgrushny A.V. Fire tactics. Basics of fire extinguishing. Ekaterinburg, Kalan Publ., 2008; 512. (rus).

5. Alpert R.L. Ceiling jet flows. SFPE Handbook of Fire Protection Engineering. 3rd ed. NFPA, 2002; 2­18­2­31. DOI: 10.1007/978­1­4939­2565­0_14

6. Sobur S.V. Automatic fire extinguishing installations : handbook. 3rd ed., rev. Moscow, CJSC “Spetstekhnika” Publ., 2003; 400. (rus).

7. Safronov V.V., Aksenova E.V. Selection and calculation of parameters of fire extinguishing and alarm systems. Orel, OrlSTU, 2004; 57. (rus).

8. Tarantsev A.A., Tanklevsky L.T., Snegirev A.Yu., Tsoi A.S., Kopylov S.N., Meshman L.M. Assessment of the sprinkler installation efficiency. Pozharnaya Bezopasnost’/Fire Safety. 2015; 1:72­79. URL: https://elibrary.ru/item.asp?id=23092679 (rus).

9. Ilyushov N.Ya. Automatic fire extinguishing installations. Novosibirsk, NSTU Publishing House, 2016; 134. (rus).

10. Voronkov O.Yu. Calculation, installation and operation of automatic fire extinguishing systems : training manual. Omsk, Publishing House of OmSTU, 2016; 140. (rus).

11. Babikov I.A., Tanklevsky A.L., Tarantsev A.A. Determination method of sprinklers with electrical activation in case of internal fire. Problems of Risk Management in the Technosphere. 2019; 3(51):34­41. URL: https://elibrary.ru/item.asp?id=41212640 (rus).

12. Xin Yibing, Burchesky K., de Vries J., Magistrale H., Zhou X., D’Aniello S. SMART sprinkler protection for highly challenging fires — Part 1: System design and function evaluation. Fire Technology. 2016; 53(5):1847­1884. DOI: 10.1007/s10694­017­0662­2

13. Grudanova O.V., Tarantsev A.A., Koroleva L.A. On the economic assessment of two ways to modernize automatic fire extinguishing systems. Problems of Risk Management in the Technosphere. 2007; 1: 38­42. (rus).

14. Meshman L.M., Tsarichenko S.G., Bylinkin V.A., Aleshin V.V., Gubin R.Yu. Design of water and foam automatic fire extinguishing systems. N.P. Kopylova (ed.). Moscow, VNIIPO of the Ministry of Emergency Situations of the Russian Federation, 2002; 413. (rus).

15. Dougal Drysdale. The Pre­Flashover Compartment Fire. An introduction to fire dynamics. 3rd ed. 2011; 349­386. DOI: 10.1002/9781119975465.ch9

16. Williams F.A. Mechanisms of fire spread. Symposium (International) on Combustion. 1977; 16(1):1281­1294.

17. De Ris J.N. Spread of a laminar diffusion flame. Symposium (International) on Combustion. 1969; 12(1):241­252.

18. Fernandez­Pello A.C. A theoretical model for the upward laminar spread of flames over vertical fuel surfaces. Combustion Flame. 1978; 31:135­148.

19. Delichatsios M.A. Surface extinction of flames on solids: some interesting results. Proceedings of the Combustion Institute. 2007; 31(2):2749­2756. DOI: 10.1016/j.proci.2006.08.032

20. Frey A.E. et al. Near­limit flame spread over paper samples. Combust. Flame. 1976; 26(1):257­267.

21. Quintiere J.G. The effects of angular orientation on flame spread over thin materials. Fire Safety Journal. 2001; 36(3):291­312.

22. Kobayashi Y., Terashima K., Oiwa R., Tokoro M., Takahashi S. Opposed­flow flame spread over carbon fiber reinforced plastic under variable flow velocity and oxygen concentration: the effect of inplane thermal isotropy and anisotropy. Proceedings of the Combustion Institute. 2021; 38(3):4857­4866. DOI: 10.1016/J.PROCI.2020.06.380

23. Gong J., Zhou X., Li J., Yang L. Effect of finite dimension on downward flame spread over PMMA slabs: experimental and theoretical study. International Journal of Heat and Mass Transfer. 2015; 91: 225­234. DOI: 10.1016/j.ijheatmasstransfer.2015.07.091

24. Gao S., Zhu G., Gao Y., Zhou J. Experimental study on width effects on downward flame spread over thin PMMA under limited distance condition. Case Studies in Thermal Engineering. 2018; 13:100382. DOI: 10.1016/j.csite.2018.100382

25. Ilyushov N.Ya. Automatic fire extinguishing installations. Novosibirsk, NSTU Publishing House, 2016; 134. (rus).

26. Markus E., Snegirev A., Kuznetsov E., Tanklevsky L. Application of a simplified pyrolysis model to predict fire development in rack storage facilities. Journal of Physics: Conference Series. 2018; 1107:042012. DOI: 10.1088/1742­6596/1107/4/042012FIREAN-DEXPLOSIONSAFETY2021VOLUME30No.141

27. Drysdale D. An introduction to fire dynamics. Chichester, John Wiley and Sons, 1985; 424.

28. Markus E., Snegirev A., Kuznetsov E., Tanklevsky L. Application of the thermal pyrolysis model to predict flame spread over continuous and discrete fire load. Fire Safety Journal. 2019; 108:102825. DOI: 10.1016/j.firesaf.2019.102825

29. Markus E.S., Snegirev A.Yu., Kuznetsov E.A., Tanklevsky L.T., Arakcheev A.V. Simulation of flame spread over discrete fire load. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2019; 28(4): 29­41. DOI: 10.18322/PVB.2019.28.04.29­41 (rus).

30. Markus E.S., Kuznetsov E.A., Snegirev A.Yu. Natural convection turbulent diffusion flame near a vertical surface. Combustion, Explosion and Shock Waves. 2018; 3(54):36­46. DOI: 10.15372/FGV20180304 (rus).

31. Snegirev A., Markus E., Kuznetsov E., Harris J., Wu T. On soot and radiation modeling in buoyant turbulent diffusion flames. Heat and Mass Transfer. 2018; 54(8):2275­2293. DOI: 10.1007/s00231­017­2198­x

32. Snegirev A.Yu., Kokovina E.S., Tsoi A.S., Talalov V.A., Stepanov V.V. Integration of models of turbulent flame and pyrolysis of combustible material: combustion thermoplastics. Proceedings of the XXXI Siberian Thermophysical Seminar. Novosibirsk, November 17–19, 2014. Novosibirsk, 2014; 226­233. (rus).


Review

For citations:


Tanklevskiy L.T., Tarantsev A.A., Bondar A.I., Balabanov I.D. Aspects of implementation of automatic fire containment systems. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2022;31(5):43-53. (In Russ.) https://doi.org/10.22227/0869-7493.2022.31.05.43-53

Views: 414


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)