Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

Pyrolysis of hybrid polyurethane inorganic thermal insulation: thermogravimetric analysis and FTIR spectra

https://doi.org/10.22227/0869-7493.2022.31.04.5-15

Abstract

Purpose. The purpose of this work is to study the process of thermal decomposition (pyrolysis) of two samples of a hybrid organic-inorganic (OIH) heat-insulating material based on data obtained by thermogravimetric analysis and IR-Fourier spectrometry.

The goal set predetermined the following research tasks: to find out the basic chemical structure of the OIH samples (by functional groups), to study the order of processes in materials when heated in nitrogen, to calculate the activation energy, the pre-exponential factor, to determine the pyrolysis mechanism.

Methods. The methods of thermogravimetric analysis and IR-Fourier spectrometry were used in the work. Samples for spectrometric analysis were prepared in the process of thermogravimetric tests using the “freezing” experiment method.

Results and discussion. The paper studies the structural features of two samples of hybrid polyurethane inorganic (OIH) thermal insulation material and traces the physicochemical processes that occur when they are heated under dynamic conditions in a nitrogen atmosphere up to 750 °C.

The multi-stage nature of the pyrolysis of the OIH material is shown. The pyrolysis of the first sample is a threestage process. For the second sample, decomposition proceeds in two stages. All stages are endothermic. This indicates the predominance of energy costs for breaking bonds between the organic and inorganic parts and other conclusions.

It has been established that the pyrolysis of OIH samples at all stages is carried out according to the mechanism of nucleation and the growth of nuclei (active centers of destruction). Analysis of the IR spectra of the samples showed that both samples were prepared using Desmodur aliphatic isocyanates.

Conclusions. The paper studies the chemical structure and physicochemical changes when heating the new group of materials — hybrid organic-inorganic (OIH) heat-insulating materials. The article is a continuation of a team of authors systematic study of a thermal behavior of modern types of polymer thermal insulation.

About the Authors

A. A. Kobelev
The State Fire Academy of the Ministry of Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Artem A. KOBELEV, Cand. Sci. (Eng.), Lecturer, Educational-Scientific Complex of Fire Safety of Protected Objects

Borisa Galushkina St., 4, Moscow, 129366

SPIN-code: 6556-5380



Yu. K. Naganovskiy
All-Russian Research Institute for Fire Protection of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters
Russian Federation

Yuriy K. NAGANOVSKIY, Cand. Sci. (Eng.), Leading Researcher

VNIIPO, 12, Balashikha, Moscow Region, 143903



E. Yu. Kruglov
The State Fire Academy of the Ministry of Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Evgeniy Yu. KRUGLOV, Cand. Sci. (Eng.), Senior Researcher, Educational-Scientific Complex of Fire Safety of Protected Objects

Borisa Galushkina St., 4, Moscow, 129366



R. M. Aseeva
The State Fire Academy of the Ministry of Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Roza M. ASEEVA, Dr. Sci. (Chem.), Professor, Educational-Scientific
Complex of Fire Safety of Protected Objects

Borisa Galushkina St., 4, Moscow, 129366



E. M. Shapikhov
The State Fire Academy of the Ministry of Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Erkebulan M. SHAPIKHOV, Adjunct, Educational-Scientific Complex of Fire Safety of Protected Objects

Borisa Galushkina St., 4, Moscow, 129366

SPIN-code: 1845-7586



References

1. Pomogailo A.D. Hybrid polymer-inorganic nanocomposites. Uspekhi khimii/Russian Chemical Reviews. 2000; 69(1):53-80. DOI:10.1070/RC2000v-069n01ABEH000506 (rus.).

2. Sanchez C., Shea K.J., Kitagawa S. Recent progress in hybrid materials science. Chemical Society Reviews. 2011; 40(2):471-472. DOI:10.1039/C1CS90001C

3. Figueira R.B. Hybrid sol-gel coatings for corrosion mitigation: A critical review. Polymers. 2020; 12(2):689. DOI:10.3390/polym12030689

4. Verdolotti L., Lavorgna M., Lamanna R., Di Maio E., Iannace S. Polyurethane-silica hybrid foam by sol-gel approach: Chemical and functional properties. Polymer. 2015; 56:20-28. DOI:10.1016/j.polymer.2014.10.017

5. Maleki H., Duraes L., Portugal A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. Journal of Non-Crystalline Solids. 2014; 385:55-74. DOI:10.1016/j.jnoncrysol.2013.10.017

6. Guo H., Meador M.A.B., McCorkle L., Quade D.J., Guo J., Hamilton B. Polyimide aerogels cross-linked through amine functionalized poly-oligomeric silsesquioxane. ACS Applied Materials. 2011; 3(2):546-552. DOI:10.1021/am101123h

7. Mandal C., Donthula S., Far H.M., Saeed A.M., Sotiriou-Leventis C., Leventis N. Transparent, mechanically strong, thermally insulating cross-linked silica aerogels for energy-efficient windows. Journal of Sol-Gel Science and Technology. 2019; 92(2): 84-100. DOI:10.1007/s10971-019-05100-5

8. Katti A., Shimpi N., Roy S., Lu H., Fabrizio E.F., Dass A. Chemical, physical and mechanical characterization of isocyanate cross-linked amino-modified silica aerogels. Chemistry and Materials. 2006; 18(2):285-296. DOI:10.1021/cm0513841

9. Demilecamps A., Alves M., Rigacci A., Reichenauer G., Budtova T. Nanostructured interpenetrated organic-inorganic aerogels with super insulating properties. Journal of Non-Crystalline Solids. 2016; 452:259-265. DOI:10.1016/j.jnoncrysol.2016.09.003

10. Meador A.B., Capadona L.A., McCorkle L., Papadopoulos D.S., Leventis N. Structure-properties relationships in porous 3D nanostructures as a function of preparation conditions. Isocyanate cross-linked silica aerogels. Chemistry of Materials. 2007; 19(9):2247-2260. DOI:10.1021/cm070102p

11. Kobelev A.A., Kruglov E.Yu., Aseeva R.M., Serkov B.B. Hybrid polyurethane-inorganic thermal- insulation: fire hazard and thermo-oxidative decomposition. Vse Materialy. Entsiklopedicheskii Spravochnik. 2021; 8:24-33. DOI:10.31044/1994-6260-2021-0-8-24-33 (rus.).

12. Kobelev A.A., Kruglov E.Yu., Naganovskii Yu.K., Aseeva R.M. Physicochemical changes of hybrid polyurethane inorganic thermal insulation when heated in air and in an inert atmosphere. Fire and emergencies: prevention, elimination. 2021; 4:22-29. DOI:10.25257/FE.2021.4.22-29 URL:https://www.elibrary.ru/item.asp?id=47501844 (rus.).

13. Kobelev A.A., Kruglov E.Yu., Naganovskii Yu.K., Aseeva R.M., Serkov B.B. Thermal-oxidative destruction of polyisocyanurate heat insulation. Vse Materialy. Entsiklopedicheskii Spravochnik. 2018; 12:31-40. DOI:10.31044/1994-6260-2018-0-12-31-39 (rus.).

14. Wang S., Wang D., Smart S., Diniz da Costa J.C. Ternary phase-separation investigation of sol-gel derived silica from ethyl silicate 40. Scientific Reports. 2015; 5(1):14560. DOI:10.1038/srep14560

15. Niznansky D., Rehspringer J.L. Infrared study of SiO2 sol to gel evolution and gel aging. Journal of Non-Crystalline Solids. 1995; 180(2-3):191-196. DOI:10.1016/0022-3093(94)00484-6

16. Chukin G.D. Surface chemistry and structure of dispersed silica. Moscow, Paladin Publ., 2008; 172. (rus.).

17. Garrido M.A., Font R. Pyrolysis and combustion study of flexible polyurethane foam. Journal of Analytical and Applied Pyrolysis. 2015; 113:202-215. DOI:10.1016/j.jaap.2014.12.017

18. Lingling J., Huahua X., Qingsong W., Jinhua S. Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polymer Degradation and Stability. 2013; 98(12):2687- 2696. DOI:10.1016/j.polymdegradstab.2013.09.032

19. Kim Jeong-Hyeon, Ahn Jae-Hyeok, Kim Jeong-Dae, Lee Dong-Ha, Kim Seul-Kee, Lee Jae-Myung. Influence of silica-aerogel on mechanical characteristics of polyurethane based composites: Thermal conductivity and strength. Materials. 2021; 14:1790. DOI:10.3390/ma14071790

20. Ballard C.C., Broge E.C., Iler R.K., John D.S.St., McWhorter J.R. Esterification of the surface of amorphous silica. The Journal of Physical Chemistry. 1961; 65(1):20-25. DOI:10.1021/j100819a007

21. Bartenev G.M., Barteneva A.G. Relaxation properties of polymers. Moscow, Khimiya Publ., 1992; 384.

22. Aliphatic polyisocyanates DESMODUR®. Industrial Coatings. 2019. URL: https://www.lkmportal.com/articles/alifaticheskie-poliizocianaty-desmodurr (rus.).


Review

For citations:


Kobelev A.A., Naganovskiy Yu.K., Kruglov E.Yu., Aseeva R.M., Shapikhov E.M. Pyrolysis of hybrid polyurethane inorganic thermal insulation: thermogravimetric analysis and FTIR spectra. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2022;31(4):5-15. (In Russ.) https://doi.org/10.22227/0869-7493.2022.31.04.5-15

Views: 299


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)