Improving the safety of oil and gas facilities by improving flame retardants
https://doi.org/10.22227/0869-7493.2022.31.03.24-33
Abstract
Introduction. One of the ways to reduce the fire hazard at industrial facilities is the application of intumescent coatings. It is known that intumescent compositions are multicomponent composite materials, whose effectiveness is due to complex chemical transformations of the components of the studied flame retardant exposed to high temperatures. In this regard, the problem of studying the physicochemical processes and thermophysical characteristics of flame retardant thermal expansion materials is in demand and relevant.
The purpose of this article is to analyze the thermophysical properties of water- and acrylic compound-based intumescent flame retardants to improve the safety of oil and gas facilities.
To accomplish this purpose, the following objectives were attained:
- studying acrylic dispersion-based intumescent flame retardant materials using methods of thermal analysis;
- analyzing aqueous dispersion-based intumescent flame retardant materials using methods of thermal analysis;
- making a comparative analysis of the thermo-oxidative degradation of the studied flame retardant materials.
Methods. During the study, thermogravimetric analysis, differential thermogravimetric analysis, differential scanning calorimetry, and quadrupole mass spectrometry were chosen as the main methods.
Results. As a result of the studies performed using methods of synchronous thermal analysis of water- and acrylic compound-based intumescent flame retardants, the similarity of ongoing physicochemical processes was identified, including the presence of four main stages of mass loss and a high exothermic effect. This high thermal effect has proven high flammability of the studied flame retardant materials.
Conclusions. Following the analysis, the authors have concluded that intumescent flame retardants, containing acrylic vinyl acetate emulsion and aqueous dispersion, begin to lose their performance characteristics, necessary for a flame retardant material, when the temperature reaches approximately ~600 °C.
About the Authors
E. V. GolovinaRussian Federation
Ekaterina V. Golovina, Cand. Sci. (Eng.), Senior Researcher
ID RISC: 846886
Mira St., 22, Ekaterinburg, Sverdlovsk Region, 620062
A. V. Kalach
Russian Federation
Andrey V. Kalach, Dr. Sci. (Chem.), Professor
ID RISC: 195516
20-letiya Oktyabrya St., 84, Voronezh, 394006;
Irkutskaya St., 1-a, Voronezh, 394072
O. V. Bezzaponnaya
Russian Federation
Oksana V. Bezzaponnaya, Cand. Sci. (Eng.), Associate Professor, Leading Researcher
ID RISC: 119257
Mira St., 22, Ekaterinburg, Sverdlovsk Region, 620062
A. S. Krutolapov
Russian Federation
Alexander S. Krutolapov, Dr. Sci. (Eng.), Associate Professor, Professor of Department of Fire
ID RISC: 357500
Moskovskiy Avenue, 149, Saint Petersburg, 196105
S. V. Sharapov
Russian Federation
Sergey V. Sharapov, Dr. Sci. (Eng.), Professor, Professor of Department of Criminology and Engineering ExpertiseImproving the safety of oil and gas facilities by improving flame retardants
ID RISC: 759428
Moskovskiy Avenue, 149, Saint Petersburg, 196105
References
1. Naymushin E.V., Dement’ev F. A., Minkin D.Yu. Studying of gypsum method of synchronous thermal analysis for estimating temperature regime of heating. Technology of technosphere safety. 2013; 6(52):9. URL: https://elibrary.ru/item.asp?id=21487182 (rus).
2. Debbabi H., Mokni R., Jlassi I., Falconieri D., Piras A., Mastouri M. et al. Gas chromatography combined with mass spectrometry and flame ionization detection for identifying the organic volatiles from Stachys arvensis, S. marrubiifolia and S. ocymastrum. International Journal of Mass Spectrometry. 2018; 432:59-64. DOI: 10.1016/j.ijms.2018.07.007
3. Bezzaponnaya O.V., Golovina E.V., Mansurov T.Kh. Features of testing of fire protection materials intumescent type by the method of thermal analysis in the conditions of a hydrocarbon fire. Technosphere safety. 2017; 3(16):57-62. (rus).
4. Bezzaponnaya O.V., Golovina Ye.V., Mansurov T. Kh., Akulov A.Yu. Application of the method of thermal analysis for the comprehensive study and improvement of the intumescent flame retardants. Technosphere safety. 2017; 2(15):3-7. (rus).
5. Bezzaponnaya O.V., Golovina E.V. Effect of mineral fillers on the heat resistance and combustibility of an intumescent fireproofing formulation on silicone base. Russian Journal of Applied Chemistry. 2018; 91(1):96-100. DOI: 10.1134/S1070427218010159
6. Groenewoud W.M. Characterisation of polymers by thermal analysis. Elsevier Science, 2001; 396.
7. Ravindra G.P., Khanna A.S. Intumescent coatings: A review on recent progress. Journal of Coatings Technology and Research. 2016; 14(1):1-20. DOI: 10.1007/s11998-016-9815-3
8. WeiE. D. l Fire-protective and flame-retardant coatings — A state-of-the-art review. Journal of Fire Sciences. 2011; 29(3):259-296. DOI: 10.1177/0734904110395469
9. Chao Zhang. Thermal properties of intumescent coatings in fire. Reliability of Steel Columns Protected by Intumescent Coatings Subjected to Natural Fires. 2015; 37-50. DOI: 10.1007/978-3-662-46379-6_4
10. Bezzaponnaya O.V., Golovina E.V., Akulov A.Yu., Kalach A.V., Sharapov S.V., Kalach E.V. Ways of improving the fire protecting thermal expanding compositions for use in oil and gas industry. Pozharovzryvobezopasnost/ Fire and Explosion Safety. 2017; 26(12):14-24. DOI: 10.18322/PVB.2017.26.12.14-24 (rus).
11. GolovinaYe. V., Bezzaponnaya O.V., Akulov A.Yu., Mansurov T.Kh. Study of fire retardant properties of intumescent compositions during fire tests in hydrocarbon combustion. Technosphere safety. 2018; 4(21):75-81. (rus).
12. Zybina O.V. Teoreticheskiye printsipy i tekhnologiya ognezashchitnykh vspuchivayushchikhsya materialov: dissertation of the Doctor of Technical Sciences. Saint Petersburg, 2015; 260. (rus).
13. Takahashi F. Fire blanket and intumescent coating materials for failure resistance. MRS Bulletin. 2021; 46(5):429-434. DOI: 10.1557/s43577-021-00102-7
14. Treven A., Saje M., Hozjan T. On a planar thermal analysis of intumescent coatings. Fire and Materials. 2017; 42(2):145-155. DOI: 10.1002/fam.2466
15. Wladyka-Przybylak M., Kozlowski R. Thermal characteristics of different intumescent coatings. Fireand Materials. 1999; 23(1):33-43. DOI: 10.1002/(SICI)1099-1018(199901/02)23:13.0.CO;2-Z
16. Khalturinskiy N.A., Krupkin V.G. On mechanism of fire retardant intumescent coating formation. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2011; 20(10):33-36. URL: https://elibrary.ru/item.asp?id=16972927 (rus).
17. Nenakhov S.A., Pimenova V.P. Physico-chemical foaming fire-retardant coatings based on ammonium polyphosphate (review of the literature). Pozharovzryvobezopasnost/ Fire and Explosion Safety. 2010; 19(8):11-58. URL: https://elibrary.ru/item.asp?id=15209813 (rus).
18. Horrocks A.R., Price D. Fire retardant materials. Woodhead Publishing, 2001; 448.
19. Camino G., Costa L., Trossarelly L. Study of mechanism of intumescence in fire retardant polymers.partii: mechanism of action in polypropylene-ammoniumpolyphosphate-pentaerythritol mixtures. Polymer Degradation and Stability. 1984; 7(1):25-31. DOI: 10.1016/0141-3910(84)90027-2
20. Babkin O.E., Zybina O.V., Mnatsakanov S.S., Tanklevskiy L.T. Mekhanizm formirovaniya penokoksa pri termolize intumestsentnykh ognezashchitnykh pokrytiy. Ogneportal. URL: http://www.ogneportal.ru/articles/coatings/2737
Review
For citations:
Golovina E.V., Kalach A.V., Bezzaponnaya O.V., Krutolapov A.S., Sharapov S.V. Improving the safety of oil and gas facilities by improving flame retardants. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2022;31(3):24-33. (In Russ.) https://doi.org/10.22227/0869-7493.2022.31.03.24-33