Estimating the maximum size of explosive iron sulfide particles
https://doi.org/10.22227/0869-7493.2022.31.03.5-11
Abstract
Introduction. There are estimates of the maximum size dcr of explosive particles of the two types of sulfide ores. The estimates are based on a qualitative approach to the dispersion analysis of combustible ore specimens (Soundararajan, Amyotte & Pegg, 1996): 49 μm < dcr, PO < 63 μm for pyrrhotite (PO) and 85 μm < dcr, PY < 145 μm for pyrite (PY). The task was to refine these estimates using the quantitative method of the mentioned analysis, taking into account the lower explosive limit (LEL) of flame propagation in terms of ore suspensions. Experimental data processing method. Continuous functions F of particle size distribution d were constructed for the two polydisperse specimens of pyrrhotite (LELPO,1 = 475 g/m3 and LELPO,2 = 1,375 g/m3) and two polydisperse specimens of pyrite (LELPY,1 = 375 g/m3 and LELPY,2 = 500 g/m3). The obtained functions FPO,1(d), FPO,2(d), FPY,1(d) and FPY,2(d) were converted using Rosin – Rammler distributions, filling the gaps between the discrete data of the grain-size analysis of the specimens. dcr rating. The procedure for estimating dcr (Poletaev, 2014) was employed to find the values of dcr, PO and dcr, PY using the following equations: FPO,1(dcr, PO)/FPO,2(dcr, PO) = LELPO,2/LELPO,1 and FPY,1(dcr, PY)/FPY,2(dcr, PY) = LELPY,2/LELPY,1. The solutions were presented in the visual graphic format.
Discussion of the results. Due to the low values of explosion parameters of pyrrhotite and pyrite in a 20‑liter chamber (maximum explosion pressure Pmax ≤ 350 kPa, index Kst ≤ 2 MPa ∙ m/s), the validity of classifying ores as explosive dusts was discussed. Low explosion values have proven that sulfur is the main fuel in the air suspension. The explosiveness of ores is proven empirically (Selle & Zehr, 1954) by estimating the combustion temperature, which exceeds 1,000 °С.
Conclusions. The values of dcr for sulfide ores have been refined: for pyrrhotite, dcr = 40 μm; for pyrite dcr = 107 μm. In the air suspensions of ores, only sulfur is burnt out, which substantially reduces the explosiveness of ores.
About the Author
N. L. PoletaevRussian Federation
Nikolay L. Poletaev, Dr. Sci. (Eng.), Leading Researcher, All-Russian Research Institute for Fire Protection of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters Estimating the maximum size of explosive iron sulfide particles
ID RISC: 1093620
12, Balashikha, Moscow Region, 143903
References
1. Soundararajan R., Amyotte P. R., Pegg M. J. Explosibility hazard of iron sulphide dusts as a function of particle size. Journal of Hazar dous Materials. 1996; 51(1-3): 225-239. DOI: 10.1016/s0304-3894(96)01825-0
2. Rao Yun-zhang, Tian Chang-shun, Xu Wei, Xiao Chun-yu, Yuan Bo-yun, Yu Yao. Explosion pressure and minimum explosible concentration properties of metal sulfide ore dust clouds. Journal of Chemistry. 2020; 1-12. DOI: 10.1155/2020/7980403
3. Teterev N. A., Ermolaev A. I., Kuznetsov A. M. Explosions of sulfide dust. Gornyy informatsionno-analiticheskiy byulleten’/Mining Informational and Analytical Bulletin (scientific and technical journal). 2018; Special edition 63:1-29. (rus).
4. Liu Q., Katsabanis P. D. Hazard evaluation of sulphide dust explosions. Journal of Hazardous Materials. 1993; 33(1):35-49. DOI: 10.1016/0304-3894(93)85062-j
5. Ermolaev A. I., Teterev N. A. Analysis of investigations in the sphere of dust explosions and its prevention at underground mines. Izvestiya vuzov. Gornyy zhurnal / Minerals and Mining Engineering. 2015; 8:75-80. URL: https://www.elibrary.ru/item.asp?id=24993420 (rus).
6. Rylnikova M., Fedotenko V., Mitishova N. Influence of structural and textural features of ores and rocks on mine dust explosion hazard during development of pyrite deposits. E3S Web of Conferences. 2020; 192:03017. DOI: 10.1051/e3sconf/202019203017
7. Gorinov S. A., Maslov I. Yu. Ignition of dust-air mixtures under the action of air shock waves in underground mining of massive sulfide ores. Gornyy informatsionno-analiticheskiy byulleten’/Mining Informational and Analytical Bulletin (scientific and technical journal). 2017; Special edition 33:13-22. (rus).
8. Poletaev N. L. Experiment-calculated estimating of the maximum particle size of explosive monodisperse dust-air mixture. Pozharovzryvobezopasnost / Fire and Explosion Safety. 2014; 23(9):15-26. DOI: 10.18322/PVB.2014.23.09.15-26 (rus).
9. Kouzov P. A. Fundamentals of the analysis of the disperse composition of industrial dusts and crushed materials. 3th ed. Leningrad, Himiya Publ., 1987; 264.
10. Selle Н., Zehr J. Beurteilung der Experimente Werte für die untere Zündgrenze von Staub. Luft-Gemischen mit Hijfe Thermochemischer Berechnungen. Staub und Reinhalt Luft, 1954; 38:583. (ger).
11. Hertzberg M., Cashdollar K. L. Introduction to dust explosions. The Industrial Dust Explosions. K. L. Cashdollar, M. Henzberg (ed.). ASTM Special Technical Publication 958. Philadelphia, ASTM, 1987; 5-32.
12. Poletaev N. L. On the problem of experimental justification of low explosibility for dust/air mixture in the 20-l chamber. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2017; 26(6):5-20. DOI: 10. 18322/PVB.2017.26.06.5-20 (rus).
13. Poletaev N. L. On explosibility of melamine dust/air mixture. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2017; 26 (9):15-28. DOI: 10.18322/PVB.2017.26.09.15-28 (rus).
14. Clouthier M. P., Taveau J. R., Dastidar A. G., Morrison L. S., Zalosh R. G., Ripley R. C., Amyotte P. R. Iron and aluminum powder explosibility in 20-l and 1 m3 chambers. Journal of Loss Prevention in the Process Industries. 2019; 62:103927. DOI: 10.1016/j.jlp.2019.103927
15. Addo A., Dastidar A. G., Taveau J. R., Morrison L. S., Khan F. I., Amyotte P. R. Niacin, lycopodium and polyethylene powder explosibility in 20-l and 1 m3 test chambers. Journal of Loss Prevention in the Process Industries. 2019; 62:103937. DOI: 10.1016/j.jlp.2019.103937
16. Taveau J. R., Lemkowitz S. M., Hochgreb S., Roekaerts D.J.E.M. Metal dusts explosion hazards andprotection. Chemical Engineering Transactions. 2019; 77:7-12. DOI: 10.3303/CET1977002
17. Poletaev N. L. On the assessment of the explosion hazard of nuclear graphite in a 1-m3 chamber. Pozharovzryvobezopasnost / Fire and Explosion Safety. 2022; 31(2):15-21. DOI: 10.18322/PVB.2022.31.02.15-21
18. Thermal constants of substances. V. P. Glushko (ed.). Moscow, VINITI, 1965-1981; I–Х.
19. Selle Н., Zehr J. Beurteilung der Experimente Werte für die untere Zündgrenze von Staub. Luft-Gemischen mit Hijfe Thermochemischer Berechnungen. Staub und Reinhalt Luft, 1954; 38:583. (ger).
Review
For citations:
Poletaev N.L. Estimating the maximum size of explosive iron sulfide particles. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2022;31(3):5-11. (In Russ.) https://doi.org/10.22227/0869-7493.2022.31.03.5-11