Preview

A study on mechanical properties of modern rolled structural metal at elevated temperatures

https://doi.org/10.22227/0869-7493.2022.31.02.52-62

Abstract

Introduction. The purpose of this work is to obtain experimental data on the numerical dependence between the strength characteristics of the most widely used grades of rolled structural metal products (including those featuring high heat resistance) and a critical increase in temperature.

Materials and methods. As the subject of research we used specimens of rolled metal of the following strength classes: С255 (steel St3sp), С345 (steel 09G2S), С390 (steel 14G2), and rolled metal that had high heat resistance properties S355P (steel 06MBF). Small cylindrical specimens of type B, with M10 thread on heads and the working diameter of 4 mm were used to conduct the static tension and compression tests of mechanical properties. The procedure encompassed the heating of the specimens to the pre-set testing temperature at the rate of not more than 10 °C/min, their 15-minute exposure, and testing for static uniaxial tension/compression.

Results and discussion. The results of the experimental research on mechanical properties of different widely used grades of rolled structural steel, including heat resistant rolled metal, subjected to the fire impact, are presented in the article. The data are presented in the form of diagrams used to make a quantitative assessment of the effect of elevated temperature on the strength properties of rolled structural metal under the impact of fire. This information can be contributed to the design and operation of structural metal constructions to develop analytical methods of identifying the fire-resistance limits of constructions made of structural metal.

Conclusion. The new data on the fire resistance of metal products allow for a more reasonable building design, higher safety and resistance of buildings and structures to the effect of fire. A wider area of application of the whole range of rolled products featuring higher heat resistance will reduce metal consumption and construction costs, boost competitiveness and attractiveness of steel structures and their application in the construction of buildings and structures of various purposes.

About the Authors

V. I. Golovanov
All-Russian Research Institute for Fire Protection of Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters
Russian Federation

Vladimir I. Golovanov, Dr. Sci. (Eng.), Chief researcher

ID RISC: 731807

12, Balashikha, Moscow Region, 143903



G. I. Kryuchkov
The State Fire Academy of the Ministry of Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Gennadiy I. Kryuchkov, Adjunct

ID RISC: 1106326; Researcher ID: ACV-2350-2022

Borisa Galushkina St., 4, Moscow, 129366



A. N. Strekalev
Research Institute of Building Constructions (TsNIISK) named after V.A. Koucherenko, JSC Research Center of Construction
Russian Federation

Aleksandr N. Strekalev, Head of Sector

ID RISC: 761041

2-ya Institutskaya St., 6, bld. 1, Moscow, 109428



A. A. Komissarov
National University of Science and Technology «MISIS»
Russian Federation

Aleksandr A. Komissarov, Cand. Sci (Eng.), Head of Laboratory

ID RISC: 755807; Scopus Author ID: 56553875000; Researcher ID: G-6717-2014

Leninskiy Prospect, 4, bld. 1, Moscow, 119049



S. M. Tikhonov
National University of Science and Technology «MISIS»
Russian Federation

Sergey M. Tikhonov, Cand. Sci. (Eng.), Senior Researcher

ID RISC: 597006; Scopus Author ID: 7004844557; Researcher ID: AGJ-2867-2022

Leninskiy Prospect, 4, bld. 1, Moscow, 119049



References

1. Yakovlev A.I. Calculation of fire resistance of building structures. Мoscow, Stroyizdat Publ., 1988; 143. (rus).

2. Golovanov V.I., Pronin D.G. The impact of the development of the regulatory framework in the field of fire safety on the use of steel structures in construction. Promyshlennoe i Grazhdanskoe Stroitelstvo/Industrial and Civil Engineering. 2021; 10:24-29. DOI: 10.33622/0869-7019.2021.10.24-29

3. Kordina K., Meyer-Ottens C. Beton brandschutz. Handbuch. 2 Auflage. Düsseldorf, Verlag Bau +Technik, 1999; 284. (ger).

4. Heo Y.-S., Sanjayan J.G., Han C.-G., Han M.-C. Synergistic effect of combined fibers for spalling protection of concrete in fire. Cement and Concrete Research. 2010; 40(10):1547-1554. DOI: 10.1016j.cemconres.2010.06.011

5. Deshevykh Yu.I. Harmonization of the Russian and international regulatory documents in the field of fire safety. Standards and Quality. 2013; 10:42-43. URL: https://www.elibrary.ru/item.asp?id=20465897 (rus).

6. Golovanov V.I., Pekhotikov A.V., Pavlov V.V. Fire protection of steel and reinforced concrete structures of industrial buildings and structures. Occupational Safety in Industry. 2021; 9:50-56. DOI: 10.24000/0409-2961-2021-9-50-56 (rus).

7. Zilch K., Müller A., Reitmayer C. Erweiterte zonenmethode zur brandschutztechnischen bemessung von stahlbetonst tzen. URL: https://www.zm-i.de/wp-content/uploads/2021/03/erweiterte-zonenmethode-zur-brandschutztechnischen-bemessung-von-stahlbetonstutzen.pdf (accessed: June 30, 2021).

8. Golovanov V.I., Pekhotikov A.V., Pavlov V.V. Evaluation of fire-retardant effectiveness of coatings for steel structures. Pozharnaya bezopasnost/Fire Safety. 2020; 4:43-54. DOI: 10.37657/vniipo.pb.2020.101.4.004 (rus).

9. Gravit M., Klementev B., Shabunina D. Fire protection of steel structures with epoxy coatings under cryogenic exposure. Buildings. 2021; 11(11):537. DOI: 10.3390/buildings11110537

10. Klementev B.A., Kalach A.V., Gravit M.V. A comparative analysis of the requirements of Russia and the United States to the fire resistance of building structures of oil refineries and petrochemical plants. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2021; 30(5):5-22. DOI: 10.22227/0869-7493.2021.30.05.5-22 (rus).

11. Golovanov V., Kryuchkov G. Steel structures fire resistance assessment under standardized fire temperature regimes. Fires and Emergencies: Prevention, Elimination. 2021; 3:52-60. DOI: 10.25257/FE.2021.3.52-60 (rus).

12. Moore D.B., Lennon T. Fire engineering design of steel structures. Progress in Structural Engineering and Materials. 1997; 1(1):4-9. DOI: 10.1002/pse2260010104

13. Fedorov V.S., Levitskiy V.E., Molchadskiy I.S., Aleksandrov A.V. Fire behavior and fire danger of building designs. Moscow, ASV Publ., 2009; 408. (rus).

14. Maraveas C., Vrakas A.A. Design of concrete tunnel linings for fire safety. Structural Engineering International. 2014; 24(3):319-329. DOI: 10.2749/101686614X13830790993041

15. Barthélèmy B., Kruppa J. Résistace au feu des structurs beton — acier — bois. Paris, Ediitions Eyrolles, 1978; 216. (fra).

16. Komissarov A.A., Tikhonov S.M., Ten D.V., Matrosov M.Yu., Glukhov P.A., Pekhotikov A.V., Kuznetsov D.V. Comparative fire resistance of modern building steels. Steel. 2021; 11:40-45. (rus).

17. Odessky P.D., Vedyakov I.I. Steel in building metal structures. Moscow, Metallurgizdat Publ., 2018; 906. (rus).

18. Odessky P.D., Kulik D.V. Steels with high resistance to extreme impacts. Moscow, Intermet Engineering Publ., 2008; 239. (rus).

19. Roytman V.M., Golovanov V.I. Need for technical regulation of the buildings fire resistance taking into account the possible combined hazardous fire exposure. Pozharnaya bezopasnost/Fire Safety. 2014; 1:86-93. (rus).

20. Gordiyenko D.M., Lagozin A.Yu., Mordvinova A.V., Shebeko Yu.N., Nekrasov V.P. Fire protection support of fixed offshore platforms for oil and gas roduction. Scientific-Technical Collection Book “Vesti gazovoy nauki”. 2019; 2(39):136-142. (rus).

21. Gordienko D.M., Vogman L.P., Gorshkov V.I., Shebeko Yu.N., Melihov A.S., Leonchuk P.A., Mordvinova A.V. Ensuring fire safety of production objects, researches and development of normative documents of FGBU VNIIPO EMERCOM of Russia in the field of fires and explosions prevention. Occupational Safety in Industry. 2017; 6:5-20. DOI: 10.24000/0409-2961-2017-6-5-20 (rus).

22. Stucchi R., Amberg F. A practical approach for tunnel fire. Structural Engineering International. 2020; 30(4):515-529. DOI:10.1080/10168664.2020.1772697

23. Dehn F., Werther N., Knitl J. Gro_brandversuche für den City-Tunnel Leipzig. Beton- und Stahlbetonbau. 2006; 101(8):631-636 DOI: 10.1002_best.200608186 (ger).

24. Dehn F., Werther N. Brandversuche anTunnelinnenschalenbetonen fur den 30-Nordtunnel in Madrid. 2006 Ernst&Sohn Verlag fur Architektur und technische Wissenschaften GmbH&Co.KG. Beton- und Stahlbetonbau. 2006; 101(9):729-731. DOI: 10.1002/best.200608187 (ger).


Review

For citations:


Golovanov V.I., Kryuchkov G.I., Strekalev A.N., Komissarov A.A., Tikhonov S.M. A study on mechanical properties of modern rolled structural metal at elevated temperatures. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2022;31(2):52-62. (In Russ.) https://doi.org/10.22227/0869-7493.2022.31.02.52-62

Views: 400


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)