Explosibility of nuclear graphite measured in a 1 m3 chamber
https://doi.org/10.22227/0869-7493.2022.31.02.15-21
Abstract
Introduction. Nuclear graphite poses a threat due to the formation of the graphite dust – air mixture (GDAM) during the dismantling of decommissioned nuclear reactors. However, there is no clear answer to the question on the GDAM explosibility. A review of international studies suggests that GDAM is either inexplosive or its explosibility is weak (Phylaktou H.N. et al., 2015). In this paper, the authors advance arguments for the explosion safety of GDAM.
Selected research result. The authors considered a well-known result of a study on the combustion of GDAM with an average particle size of 5 μm, the concentration of about 450 g/m3 in a 1.138 m3 chamber, and an ignitionsource made by Fr. Sobbe GmbH («Sobbe 10 kJ»). The maximum overpressure ΔPmax was 0.47 bar in the chamber, and it fitted the case of an explosive air suspension, according to EN 14034-3 (1 bar = 100 kPa).
Interpretation of the research result. Pressure oscillograms were compared for the following two cases: the case of the maximum manifestation of the GDAM explosion hazard (ΔPmax = 0.47 bar; dP/dt|max = 3.8 bar/s) and the case of combustion of an ignition source in the absence of air suspension (ΔPmax = 0.027 bar; dP/dt|max = 2.7 bar/s). The comparison shows that the first 20 ms of a pressure change inside the chamber is mainly due to the combustion of the ignition source: the characteristic values ΔP = 0.03 bar and (dP/dt) ≈ 3.8 bar/s are close to the «Sobbe 10kJ» combustion index in the absence of GDAM. A further increase in ΔP is accompanied by the constant or sharply decreasing value of (dP/dt), which means a monotonous decrease in the flame velocity and proves the incombustibility of GDAM.
Conclusions. Due to the smallness of ΔPmax, GDAM can be considered nonexplosive under normal atmospheric conditions. Dependency diagrams, relating the pressure of combustion products and its growth to time offer important information about the combustion of the air suspension in explosion chambers under the condition of a low dust explosion hazard.
About the Author
N. L. PoletaevRussian Federation
Nikolay L. Poletaev, Dr. Sci. (Eng.), Leading Researcher
12, Balashikha, Moscow Region, 143903
ID RISC:1093620
References
1. Turkevich L.A., Dastidar A.G., Hachmeister Z., Lim M. Potential explosion hazard of carbonaceous nanoparticles: Explosion parameters of selected materials. Journal of Hazardous Materials. 2015; 295:97-103. DOI: 10.1016/j.jhazmat.2015.03.069
2. Turkevich L.A., Fernback J., Dastidar A.G., Osterberg P. Potential explosion hazard of carbonaceous nanoparticles: screening of allotropes. Combustion and Flame. 2016; 167:218-227. DOI: 10.1016/j.combustflame.2016.02.010
3. Sha D., Li Yu., Zhou X., Zhang J., Zhang H., Yu J. Influence of volatile content on the explosion characteristics of coal dust. ACS Omega. 2021; 6(41):27150-2715. DOI: 10.1021/acsomega.1c03803
4. Santandrea A., Pacault S., Perrin L., Vignes A., Dufaud O. Nanopowders explosion: Influence of the dispersion characteristics. Journal of Loss Prevention in the Process Industries. 2019; 62:103942. DOI: 10.1016/j.jlp.2019.103942
5. Scholl E.W., Reeh D., Wiemann W. et al. Brenn- und Explosions — Kenngrößen von Stäuben. SFTReport. 1979; 2.2:100. (ger).
6. Poletaev N.L. On the problem of experimental justification of low explosibility for dust/air mixture in the 20-l chamber. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2017; 26(6):5-20. DOI: 10.18322/PVB.2017.26.06.5-20 (rus).
7. Addo A., Dastidar A.G., Taveau J.R., Morrison L.S., Khan F.I., Amyotte P.R. Niacin, lycopodium and polyethylene powder explosibility in 20-L and 1 m3 test chambers. Journal of Loss Prevention in the Process Industries. 2019; 62:103937. DOI: 10.1016/j.jlp.2019.103937
8. Clouthier M.P., Taveau J.R., Dastidar A.G., Morrison L.S., Zalosh R.G., Ripley R.C., Amyotte P.R. Iron and aluminum powder explosibility in 20-L and 1 m3 chambers. Journal of Loss Prevention in the Process Industries. 2019; 62:103927. DOI: 10.1016/j.jlp.2019.103927
9. Poletaev N.L. On explosibility of melamine dust/air mixture. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2017; 26(9):15-28. DOI: 10.18322/PVB.2017.26.09.15-28 (rus).
10. Taveau J.R., Lemkowitz S.M., Hochgreb S., Roekaerts D.J.E.M. Metal dusts explosion hazards and protection. Chemical Engineering Transactions. 2019; 77:7-12. DOI: 10.3303/CET1977002
11. Graphite dust deflagration: A review of international data with particular reference to the decommissioning of graphite moderated reactors. EPRI, Palo Alto, CA, 2007; 1014797.
12. Phylaktou H.N., Andrews G.E., Mkpadi M., Willacy S., Wickham A.J. The explosibility of graphite powder; the effects of ignition energy, graphite concentration and graphite age. 16th International Nuclear Graphite Specialists Meeting, 13–17 Sept 2015, Nottingham. 2015. URL: https://www.researchgate.net/publication/281862384
13. Mintz K.J. Problems in experimental measurements of dust explosions. Journal of Hazardous Materials. 1995; 42(2):177-186. DOI: 10.1016/0304-3894(95)00011-i
14. Proust Ch., Accorsi A., Dupont L. Measuring the violence of dust explosions with the “20 l sphere” and with the standard “ISO 1m3 vessel”. Systematic comparison and analysis of the discrepancies. Journal of Loss Prevention in the Process Industries. 2007; 20:599-606. DOI: 10.1016/J.JLP.2007.04.032
15. Zhen G., Leuckel W. Effects of ignitors and turbulence on dust explosions. Journal of Loss Prevention in the Process Industries. 1997; 10(5-6):317-324. DOI: 10.1016/S0950-4230(97)00021-1
16. Pu Y.K., Jia F., Wang S.F., Skjold T. Determination of the maximum effective burning velocity of dust– air mixtures in constant volume combustion. Journal of Loss Prevention in the Process Industries. 2007; 20(4-6):462-469. DOI: 10.1016/j.jlp.2007.04.036
17. Cashdollar K.L., Chatrathi K. Minimum explosible dust concentrations measured in 20-L and 1-m3 chambers. Combustion Science and Technology. 1993; 87(1-6):157-171. DOI: 10.1080/00102209208947213
18. Poletaev N.L. Experiment-calculated estimating of the maximum particle size of explosive monodisperse dust-air mixture. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2014; 23(9):15-26. DOI: 10.18322/PVB.2014.23.09.15-26 (rus).
19. Wilén C., Moilanen A., Rautalin A., Torrent J., Conde E., Lödel R. et al. Safe handling of renewable fuels and fuel mixtures. VTT Technical Research Centre of Finland. ESPOO Publ., 1999; 394:125. URL: http://www.vtt.fi/inf/pdf/publications/1999/P394.pdf
Review
For citations:
Poletaev N.L. Explosibility of nuclear graphite measured in a 1 m3 chamber. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2022;31(2):15-21. (In Russ.) https://doi.org/10.22227/0869-7493.2022.31.02.15-21