Preview

Pozharovzryvobezopasnost/Fire and Explosion Safety

Advanced search

On ensuring the safe movement of emergency service vehicles under hazardous driving conditions

https://doi.org/10.22227/0869-7493.2021.30.06.97-107

Abstract

Introduction. The relevance of the study is substantiated by the need for a safe and timely arrival of an emergency service vehicle (firefighters, police, paramedics, gas service teams) to the place of call under the conditions of poor road visibility due to smoke, fog, snowfalls, the night time in the absence of illumination.
Ensuring safe movement under the conditions of poor visibility. In case of smoke and insufficient visibility due to wildfires, safe movement is possible, if the air pressure in the cabin is excessive and the driver uses a thermal imager by. When a car is driven under the conditions of fog, a snowfall or the lack of illumination, a thermal imager can also be used. The gas-dynamic analysis of air supply to the cabin and its schemes are provided. The co-authors made a gas-dynamic assessment of the air flow rate if the cabin is not hermetically sealed and the crew stay inside.
The car movement in case of floods and damaged roads. The structural layout diagram of an emergency service vehicle designed to move through flooded areas and along damaged roadbeds is provided.
Conclusions. The novelty and expediency of the above technical solutions are confirmed by the RF patents. Their implementation will allow emergency services to arrive safely to the place of call, regardless of the road conditions.

About the Authors

I. G. Malygin
Solomenko Institute of Transport Problems of the Russian Academy of Sciences; Saint-Petersburg University of State Fire Service of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Igor G. Malygin, Dr. Sci. (Eng.), Professor, Director; Professor; Honored Worker of the Higher School of the Russian Federation

Scopus Author ID: 57159964300

ResearcherID: E-2182-2018

12-ya Liniya VO, 13, Saint Petersburg, 199178

Moskovskiy Avenue, 149, Saint Petersburg, 196105



A. A. Tarantsev
Solomenko Institute of Transport Problems of the Russian Academy of Sciences; Saint-Petersburg University of State Fire Service of the Ministry of the Russian Federation for Civil Defense, Emergencies and Elimination on Consequences of Natural Disasters
Russian Federation

Alexander A. Tarantsev, Dr. Sci. (Eng.), Professor, Head; Professor

Scopus Author ID: 57195636448

ResearcherID: K-2087-2018

12-ya Liniya VO, 13, Saint Petersburg, 199178

Moskovskiy Avenue, 149, Saint Petersburg, 196105



References

1. RF patent No. 105833 U1. Fire-and-rescue vehicle with reverse movement for extinguishing fires and carrying out rescue operations in tunnels. Aleshkov M.V., Sochnev M.E., Emelyanov E.A., Ploskonosov A.V. No. 2010134048/12, appl.: August 13, 2010; publ.: June 27, 2011. Bull. No. 18. (rus).

2. Terebnev V.V., Podgrushny A.V. Fire tactics. Basics of fire fighting. Ekaterinburg, Kalan Publ., 2008; 512. (rus).

3. RF patent No. 2756194 C1. A method for safely following an emergency vehicle to the place of a call and a vehicle for implementing the method. Malygin I.G., Komashinsky V.I., Tarantsev A.A. No. 2020135941, appl.: October 30, 2020; publ.: September 28, 2021. Bull. No. 28. (rus).

4. Loitsyansky L.G. Mechanics of fluid and gas: a textbook for universities. 7th ed. Moscow, Drofa Publ., 2003; 840. (rus).

5. RF patent No. 2003551 C1. Car / A.A. Tarantsev. No. 925044023, appl: 05/25/1992. (rus).

6. Bogdanov M.I., Arkhipov G.F., Myastenkov E.I. Handbook of Fire Engineering and Tactics : A Study Guide. Saint Petersburg, 2007; 120. (rus).

7. Potic I. Remote sensing approach to forest fires monitoring. Environment Science and Policy for Sustainable Development. 2016; 4(2):47-51.

8. Arbeitkreis Waldbrand Im Deutschen Feuerwehrverband: Sicherheit und Taktik im Waldbrandeinsatz. AFZ-Der Wald. 2009; 14:755-757. (ger).

9. Müller C. et al. Waldbrandschutz — Manuskript der Bund-Länder-Arbeitsgruppe Waldbrandschutz. Caspers G. Waldbrandschutz. 2000. CD-ROM. aid. (ger).

10. König H.-C. Waldbrandschutz. Kompendium für Forst und Feuerwehr. Supplement Band 1, Hrsg. Mathias Bessel, Fachverlag Matthias Grimm, 2007; 197. (ger).

11. Südmersen J., Cimolino U., Neumann N. Wald- und Flächenbrandbekämpfung. Standard-Einsatz-Regeln. ecomed Sicherheit.1. Auflage. 2008; 102. (ger).

12. Gornostal S.A., Petukhova O.A. Аналіз вимог нормативних документів до проведення випробувань на водовіддачу. Профілактика, попередження та ліквідація надзвичайних ситуацій : збірник матеріалів наук.-прак. семінару. Kharkiv, NUZU, 2017; 13-14. (ukr).

13. Jonson R., Fenimore D. Fire and flammability woods. Journal of the American Chemical Society. 1999; 460-467.

14. Korovin G.N., Isaev A.S. Protection of forests from fires as the most important element of Russia’s national security. Forest Bulletin. 2006; 8-9. (rus).

15. Moiseev N.A. What kind of breakthrough in the forest affairs of Russia can and should be discussed? Lesnoy vestnik/Forestry Bulletin. 2019; 23(5):8-15. DOI: 10.18698/2542-1468-2019-5-8-15(rus).

16. Organization of the fight against forest fires in the United States. Forest fires in Russia: state and problems. Yu.L. Vorobyov (ed.). Moscow, Dex-Press Publ., 2004; 312. (rus).

17. Shcherbov B.L., Lazareva E.V., Zhurkova I.S. Forest fires and their consequences (on the example of Siberian objects). N.D. Roslyakov (ed.). Novosibirsk, Acad. Geo Publishing House, 2015; 154. (rus).

18. Sheshukov M.A., Kovalev A.P., Orlov A.M., Pozdnyakova V.V. Problems and prospects of forest fire protection. Siberian Forest Journal. 2020; 2:14-20. DOI: 10.15372/SJFS20200202 (rus).

19. Filkov A.I. Physico-mathematical modeling of the occurrence of natural fires and the study of the characteristics of drying, pyrolysis and ignition of combustible materials : abstract of the dissertation of Doctor of Physical and Mathematical Sciences. Tomsk, 2014; 39. (rus).

20. Abramov V.P. Analysis of forest fires and optimization of their protection from fires in the subzones of preforest-steppe pine-birch forests and the northern forest-steppe of the Tyumen region : dissertation of the candidate of agricultural sciences. Ekaterinburg, 2008; 148. (rus).

21. Kirsanov A.A. Modeling the spread of pollutants in the atmosphere during forest fires : abstract of the dissertation of the candidate of geographical sciences. Moscow, 2015; 23. (rus).

22. Krektunov A.A. Scientific substantiation of the system of protection of settlements from forest fires in the Middle Urals : dissertation of the candidate of agricultural sciences. Ekaterinburg, 2016; 182. (rus).

23. Surkova G.V., Blinov D.V., Kirsanov A.A., Revokatova A.P., Rivin G.S. Simulation of spread of air pollution plumes from forest fires with the use of COSMO-Ru7-ART chemical-transport model. Atmospheric and Oceanic Optics. 2014; 3:268-274. DOI: 10.1134/S1024856014030105

24. Bui D.P., Pollack Porter K., Griffin S., French D.D., Jung A.M., Crotherset S. et al. Risk management of emergency service vehicle crashes in the United States fire service: process, outputs, and recommendations. BMC public health. 2017; 17(1):1-11. DOI: 10.1186/s12889-017-4894-3

25. Missikpode C., Peek-Asa C., Young T., Hamann C. Does crash risk increase when emergency vehicles are driving with lights and sirens? Accident Analysis & Prevention. 2018; 113:257-262. DOI: 10.1016/j.aap.2018.02.002

26. Jang Dong-Ha, Ku Jae-Hyun, Jeong Jae-Han, Lim Woo-Sub. Comparison between Domestic and foreign technical standards to review the necessity of establishing a performance test system for high-pressure and high-flow fire pumps in fire. Fire Science and Engineering. 2021; 35(4):65-70. DOI: 10.7731/KIFSE.cc41f350

27. Usanov D., van de Ven P.M., van der Mei R.D. Dispatching fire trucks under stochastic driving times. Computers & Operations Research. 2020; 114:104829. DOI: 10.1016/j.cor.2019.104829

28. Simeonov P., Hsiao H., Nimbarte A., Current R., Ammons D., Choi H.-S. et al. Evaluation of advanced curve speed warning system for fire trucks. Applied ergonomics. 2021; 97:103527. DOI: 10.1016/j.apergo.2021.103527

29. Nowicki T. Optimization of equipment deployment on fire trucks. MATEC Web of Conferences. EDP Sciences, 2017; 125:02016. DOI: 10.1051/matecconf/201712502016

30. Hariani M.L., Astor Y. Determination of the fastest route for fire trucks in cirebon city based on distance, time, congestion and land use. Journal of Green Science and Technology. 2021; 5(1). DOI: 10.33603/jgst.v5i1.4905


Review

For citations:


Malygin I.G., Tarantsev A.A. On ensuring the safe movement of emergency service vehicles under hazardous driving conditions. Pozharovzryvobezopasnost/Fire and Explosion Safety. 2021;30(6):97–107. (In Russ.) https://doi.org/10.22227/0869-7493.2021.30.06.97-107

Views: 426


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0869-7493 (Print)
ISSN 2587-6201 (Online)