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АННОТАЦИЯ
Введение. Стальные конструкции при высокотемпературном воздействии деформируются, теряют устойчи-
вость и несущую способность, в результате чего происходит обрушение конструкций с последующим обруше-
нием здания. Известно, что для увеличения пределов огнестойкости стальных конструкций до R 90 и R 120 
часто используют вспучивающиеся краски. Но огнезащитная эффективность вспучивающихся красок при 
длительной эксплуатации недостаточно изучена, и  применение такого вида огнезащитной обработки для 
несущих стальных конструкций требует обоснования. Для обеспечения устойчивости здания с требуемым 
пределом огнестойкости конструкций актуальным является изучение технологических факторов, влияющих 
на огнестойкость стальных конструкций со вспучивающимися красками на водной основе.
Цель работы. Разработка подходов к моделированию номограмм прогрева стальных конструкций с огне
защитными покрытиями различной толщины на водной основе. Были решены следующие задачи:
•  построены блок-схемы исследования для получения фундаментальных взаимосвязей динамики измене-

ния структуры огнезащитного материала при тепловом воздействии на предел огнестойкости строитель-
ной конструкции на основе выбора функционального критерия;

•  разработаны математические модели зависимости толщины сухого слоя огнезащитных материалов от требу
емого предела огнестойкости и теплофизических характеристик огнезащитных материалов на основании 
экспериментальных исследований свойств и эффективности огнезащитных материалов;

•  построены номограммы зависимостей толщины сухого слоя огнезащитных материалов от огнезащитной 
эффективности огнезащитных материалов на водной основе.

Методы исследования. Для анализа теплофизических характеристик огнезащитных материалов использо-
вали анализатор термических констант Hot Disk TPS 1500. С помощью термического анализа производи-
лось исследование свойств огнезащитных материалов, а также происходящих в них физико-химических пре-
образований при программированном воздействии температуры и с применением специализированной 
аппаратуры термического анализа. Изучение эффективности средств огнезащиты для стальных конструкций 
проводилось в соответствии с ГОСТ Р 53295–2009 «Средства огнезащиты для стальных конструкций. Общие 
требования. Метод определения огнезащитной эффективности». 
Результаты и их обсуждение. В результате исследований был разработан подход к прогнозированию огне-
стойкости строительных конструкций в виде построения блок-схемы исследования, на основании которой 
производится выбор функциональных критериев. На основе получения экспериментальных исследований 
возможно построение математических зависимостей огнестойкости от  показателей, которые являются 
функциональными критериями. В частности, при оценке огнестойкости стальных конструкций проводится 
прогнозирование на основе теплофизических показателей. В работе впервые предложено введение функ-
ции огнезащитного материала в  стандартный расчет огнестойкости при решении статической и  тепло
физической задач. На основе полученных данных приведены уравнения зависимости толщины сухого слоя 
огнезащитного материала от требуемого предела огнестойкости конструкции и номограмма прогрева защи-
щенных стальных конструкций с огнезащитными покрытиями различной толщины.
Выводы. По итогам проведенных исследований получены фундаментальные взаимосвязи динамики изме-
нения структуры огнезащитного материала при тепловом воздействии на  предел огнестойкости строи
тельной конструкции на  основе выбора функционального критерия. На  основании экспериментальных 
исследований свойств и  эффективности огнезащитных материалов разработана математическая модель 
зависимости толщины сухого слоя огнезащитных материалов от требуемого предела огнестойкости и тепло-
физических характеристик огнезащитных материалов.

Ключевые слова: огнестойкость строительных конструкций; расчет предела огнестойкости; математическое 
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ABSTRACT
Introduction. High temperatures cause deformation of steel structures which also lose stability and the bear-
ing capacity, resulting in the collapse of structures with the subsequent collapse of the building. It is under-
stood that intumescent paints are often used to increase the fire-resistance limits of steel structures up to 
R 90 and R 120. However the fire protection effectiveness of intumescent paints has not been sufficiently 
studied for the case of the long-term operation, and the application of this type of fire protection treatment of 
bearing steel structures requires justification. To ensure the building stability, coupled with the required fire 
resistance limit of structures, one should study the engineering factors affecting the fire resistance of steel 
structures that have intumescent paint coatings.
Purpose of the research work. Development of approaches to simulation of nomograms demonstrating the heat-
ing of steel structures with flame retardant coatings of different thicknesses. The research work solved the fol-
lowing tasks:
•  block diagrams of the research undertaking were developed to find the fundamental relationships between 

the dynamics of change in the structure of fire protection materials under thermal effects and the fire resist-
ance limit of a building structure based on the choice of the functional criterion;

•  mathematical models demonstrating dependence between the  thickness of the  dry layer of fire-retardant 
material were developed; the required fire resistance limit and thermo-physical characteristics of fire-resistant 
materials based on the experimental studies of the properties and effectiveness of fire-resistant materials 
were identified;

•  nomograms showing dependences between the thickness of the dry layer of flame retardant materials and 
the flame retardant efficiency of flame retardants were made.

Research methods. Hot Disk TPS 1500 thermal constant analyzer was used to analyze the thermo-physical cha
racteristics of flame retardant materials. Thermal analysis was used to study the properties of flame retardants, 
as well as physical and chemical transformations occurring inside them under the programmed exposure to 
temperature effects and with the use of specialized thermal analysis equipment. The study of the fire protection 
efficiency for steel structures was conducted in accordance with GOST R (Russian State Standard) 53295–2009 
“Fire protection means for steel structures. General requirements. The method of fire protection efficiency deter-
mination”.
Results and their discussion. As a  result of the  research, an approach to prediction of the fire resistance of 
building structures was developed in the  form of a  research flowchart, used to choose the  functional crite-
ria. Experimental studies were conducted to identify mathematical dependences between the fire resistance 
and the indicators, which serve as functional criteria. In particular, when assessing the fire resistance of steel 
structures, a prediction is made on the basis of thermos-physical indicators. The authors were first to propose 
the introduction of the function of fire protection materials into the standard pattern of fire resistance analysis 
in the course of solving static and thermo-physical problems. The obtained data were used to make equations 
of dependence between the thickness of a dry layer of a fire-retardant material, the required fire-resistance limit 
of a structure, and the nomogram showing the heating of protected steel structures with fire-retardant coatings 
of various thicknesses.
Conclusions. The  results of the studies allowed identifying fundamental relationships between the dynamics 
of change in the structure of fire-retardant materials under the thermal effect and the fire resistance limit of 
a building structure on the basis of the choice of a functional criterion. Experimental studies of the properties 
and effectiveness of fire-resistant materials were conducted to develop a mathematical model showing depend-
ence between the  thickness of the dry layer of fire-resistant materials, the  required fire-resistance limit and 
thermal-physical characteristics of fire-resistant materials.

Keywords: fire resistance of building structures; analysis of the fire resistance limit; mathematical modelling; 
bearing capacity; fire protection materials
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Введение

Стальные конструкции при высокотемпературном 
воздействии деформируются, теряют устойчивость 
и несущую способность, в результате чего проис­
ходит обрушение конструкций с  последующим 
обрушением здания [1, 2]. 

Поведение защищенных стальных конструкций 
зависит от теплофизических характеристик сухого 
слоя огнезащитных покрытий: λ (теплопровод­
ность), ρ (плотность), Cp (теплоемкость) с учетом 
высокотемпературного воздействия [3].

Известно, что начало обрушения несущих 
стальных конструкций может происходить через 
10–15 мин после начала пожара в  стандартном 
режиме. Предотвращение обрушения возможно 
с увеличением предела огнестойкости конструкций 
и здания в целом за счет нанесения огнезащитных 
покрытий на металлические конструкции. В насто­
ящее время рынок огнезащитных материалов 
для стальных конструкций достаточно обширен 
и каждый из продуктов в данной области должен 
быть подвергнут подтверждению огнезащитных 
свойств [4]. 

В.И. Голованов пишет, что оценка огнестойкости 
строительных конструкций производится двумя 
способами: испытанием и расчетом, с учетом темпе­
ратурного режима стандартного пожара, который 
характеризуется следующей зависимостью:

T T� � �� �0 345 8 1lg ,�

где Т — среднеобъемная температура, соответству­
ющая времени t, °С;
T0 — температура до начала теплового воздей­
ствия (принимается равной температуре окружа­
ющей среды), °С; 
τ — время, исчисляемое от начала огневого воз­
действия, мин.
Эффективность огнезащитных средств для сталь­

ных конструкций определяется временем нагрева 
двутавровой колонны, без приложения статической 
нагрузки на образец, до усредненной критической 
температуры стали 500 °С. Затем с учетом времени 
прогрева стали огнезащитное покрытие относится 
к соответствующей группе огнезащитной эффектив­
ности.

Определение предела огнестойкости расчетным 
методом основывается на результатах огневых испы­
таний аналогичных конструкций с учетом толщины 
покрытия, теплотехнических и высокотемпературных 

характеристик огнезащитных покрытий (λ (тепло­
проводность), ρ (плотность), Cp (теплоемкость)).

Толщина огнезащитного покрытия  — один 
из  основных показателей, влияющих на  прогрев 
стальных конструкций. 

При высокотемпературном воздействии коэф­
фициент температуропроводности огнезащитных 
покрытий изменяется в зависимости от их состава 
и температуры:

�
�
�

� t

tc 0

,  м2/с,

где λt — коэффициент теплопроводности, Вт/(м·град);
ct — теплоемкость, Дж/(кг·град);
ρ0 — плотность, кг/м3.
Огнезащитные вспучивающиеся краски при 

нагревании выделяют парообразные вещества 
и  образуют на  защищаемой поверхности тонкий 
непрозрачный слой, который вспучивается при опре­
деленной температуре, и толщина его увеличивается 
в 50–100 раз. Вспучивающиеся краски на  водной 
и  органической основе наносят на  поверхность 
стальных конструкций слоем толщиной до  3  мм. 
При температуре 170–220 °С покрытие вспучивается 
с образованием пористого термоизоляционного слоя. 
Пористый слой с низкой теплопроводностью предот­
вращает быстрый нагрев защищаемых конструкций. 

Известно, что для увеличения пределов огне­
стойкости стальных конструкций до R 90 и R 120 
часто используют вспучивающиеся краски. Но огне­
защитная эффективность вспучивающихся красок 
при длительной эксплуатации недостаточно изу­
чена, и применение такого вида огнезащитной обра­
ботки для несущих стальных конструкций требует 
обоснования. 

Для обеспечения устойчивости здания с требу­
емым пределом огнестойкости конструкций не более 
R 30 актуальным является изучение технологических 
факторов, влияющих на огнестойкость стальных кон­
струкций со вспучивающимися красками на водной 
основе [5, 6].

­Цель работы — разработка подходов к модели­
рованию номограмм прогрева стальных конструк­
ций с огнезащитными покрытиями различной тол­
щины на водной основе.

Задачи:
1. Построение блок-схемы исследования для 

получения фундаментальных взаимосвязей дина­
мики изменения структуры огнезащитного матери­
ала при тепловом воздействии на предел огнестой­
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кости строительной конструкции на основе выбора 
функционального критерия.

2. Проведение экспериментальных исследований 
для определения теплофизических характеристик 
(теплоемкости, теплопроводности), эксплуатацион­
ных характеристик (плотность, кратность вспучива­
ния) огнезащитного покрытия на водной основе.

3. Разработка математической модели зависи­
мости толщины сухого слоя огнезащитных матери­
алов от требуемого предела огнестойкости и тепло­
физических характеристик огнезащитных материалов 
на  основании экспериментальных исследований 
свойств и эффективности огнезащитных материалов.

4. Построение номограмм зависимостей толщины 
сухого слоя огнезащитных материалов от  огне­
защитной эффективности огнезащитных материалов 
на водной основе.

Теоретическая часть

Исходной фундаментальной зависимостью для 
решения задачи прогнозирования эффективности 
средств огнезащиты для строительных материалов 
и конструкций является подход к расчетной оценке 
пределов огнестойкости, основанный на решении ста­
тической и теплотехнической задачи [7, 8] (рис. 1 и 2).

Огнезащитные вспучивающие материалы в зави­
симости от типа связующего, наполнителей и добавок 
имеют большое разнообразие [9–12]. Для того чтобы 
учесть большое разнообразие средств огнезащиты 
для металлических конструкций, принято решение — 
в качестве функциональных критериев не исполь­
зовать параметры, учитывающие компонентный 
химический состав огнезащитных материалов. Опти­
мальным вариантом является использование в даль­

нейшей работе теплотехнических характеристик: 
теплоемкости, теплопроводности, тепловых эффектов 
химических реакций. Кроме того, необходимо учесть 
и структурные характеристики: плотность и кратность 
вспучивания огнезащитных материалов [13]. 

Авторами предложена блок-схема для исследо­
вания средств огнезащиты для металлических кон­
струкций (рис. 3).

Кроме параметров, учитывающих поведение 
огнезащитных материалов в условиях высокотемпе­
ратурных воздействий, следует также учитывать 
эксплуатационные характеристики, определяемые 

Рис. 2. Оценка предела огнестойкости с использованием 
функции средства огнезащиты
Fig. 2. Using the fire retardant function to evaluate the fire resis­
tance limit
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Рис. 3. Блок-схема для исследования параметров средств 
огнезащиты для металлических конструкций и материалов
Fig. 3. The block diagram for the study of fire safety parameters 
for metal structures and materials

Рис. 1. Оценка предела огнестойкости расчетным методом
Fig. 1. Using the method of analysis to evaluate the fire resis­
tance limit
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устойчивостью средств огнезащиты к механическим 
воздействиям, коррозии, а также к длительным воз­
действиям окружающей среды (долговечностью). 
Кроме этих характеристик большой актуальностью 
пользуются также параметры, связанные с эксплуата­
цией средств огнезащиты в различных климатических 
условиях, а также для различных видов поверхностей, 
что также может быть проработано [14–24] (рис. 4).

Построенный алгоритм предлагает прогнозиро­
вать поведение огнезащитных материалов с исполь­
зованием их теплотехнических характеристик 
в условиях воздействия высоких температур. 

Методы исследования

Анализ теплофизических характеристик
Анализаторы термических констант Hot Disk 

TPS 1500, «Hot Disk AB», диапазон определе­
ния теплопроводности в нестационарном режиме 
0,01–400 Вт/(м·К), температуропроводности 
0,01–100 мм2/с удельной объемной теплоемкости 
вплоть до 5 МДж/(м3·К), погрешность определения 

теплопроводности ± 5 % (сертификат о калибровке 
№ 5130 м до 01.08.2021) (рис. 5) взаимодействует 
с  плоским сенсором (рис. 6), который состоит 
из электропроводящей двойной спирали, выпол­
ненной из тонкой никелевой фольги. Эта спираль 
зажата между двумя тонкими листами изолиру­
ющего материала (каптон или слюда в зависимости 
от температуры измерения).

В процессе эксперимента плоский сенсор поме­
щают между двумя одинаковыми образцами так, 
чтобы сенсор касался их поверхностей. Сенсор явля­
ется как источником тепла, так и динамическим термо­
метром. Это достигается за счет того, что по спирали 
сенсора пропускается электрический ток, которого 

Рис. 5. Анализатор термических констант Hot Disk TPS 1500
Fig. 5. Hot Disk TPS 1500 thermal constant analyzer

Рис. 6. Плоский сенсор Hot Disk: материал изоляции каптон 
(слева) и слюда (справа)
Fig. 6. Hot Disk flat sensor: captone insulation material (left) and 
mica (right)

Рис. 4. Блок-схема выбора для металлических конструкций с применением функции средства огнезащиты
Fig. 4. Choice-making block diagram for metal structures using the function of the fire safety assurance facility

Характеристики 
строительного объекта

Properties  
of the building object

Теплотехнические свойства
Thermal properties

Толщина 
конструкции

Structure thickness

Q Сp

λ ρ Толщина ОЗМ

f (эксплуатационные)
f (operational)

Эксплуатационные 
свойства

Operational properties

Адгезия
Adhesion

Биостойкость
Biostability

Коррозионная 
стойкость
Corrosion 
resistance

Кратность 
вспучивания
Intumescence 

factor

Свойства ОЗМ
Fire retardant properties

Fire retardant 
thickness

f (средства огнезащиты)
f (fire retardant) 

Предел огнестойкости
Fire resistance limit

Статическая задача
Static engineering task

Теплотехническая задача
Thermal engineering task

Характеристики 
конструкции

Structure 
properties 



МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ, ЧИСЛЕННЫЕ МЕТОДЫ И КОМПЛЕКСЫ ПРОГРАММ

35ПОЖАРОВЗРЫВОБЕЗОПАСНОСТЬ/FIRE AND EXPLOSION SAFETY  2022  ТОМ 31  № 6

достаточно, чтобы повысить температуру сенсора 
от долей до нескольких градусов, при этом одновре­
менно фиксируется увеличение температуры как 
функция от времени. Вследствие увеличения темпе­
ратуры сопротивление сенсора меняется, что сопро­
вождается перепадом напряжения. Прибор фиксирует 
изменения в напряжении и силе тока в течение опре­
деленного промежутка времени и точно рассчиты­
вает тепловой поток между сенсором и исследуемым 
образцом.

Для измерения увеличения сопротивления сен­
сора используется электрический мост. Через этот 
сбалансированный мост при помощи чувствитель­
ного вольтметра определяется увеличение сопротив­
ления сенсора в процессе считывания дисбаланса 
в напряжении.

Термический анализ (ТА) 
Представляет собой совокупность методов, 

с  помощью которых производится исследование 
свойств веществ и материалов, а также происхо­
дящие в них физико-химические преобразования 
при программированном воздействии температуры 

и с применением специализированной аппаратуры 
термического анализа [25–29] (рис. 7).

В работе использовался метод термогравимет­
рии для оценки потери массы образца в процессе 
терморазложения, метод дифференциального термо­
анализа для установления величины тепловых 
эффектов химических реакций в процессе термо­
разложения. На основании полученных результатов 
также устанавливалась величина температуры, при 
которой происходило вспучивание огнезащитных 
материалов.

Огневые испытания
Исследование эффективности средств огнезащиты 

для стальных конструкций проводилось в соответ­
ствии с ГОСТ Р 53295–2009 «Средства огнезащиты 
для стальных конструкций. Общие требования. Метод 
определения огнезащитной эффективности».

В качестве испытательного оборудования исполь­
зовалась малогабаритная печь, предназначенная для 
исследования огнезащитной эффективности средств 
огнезащиты, нанесенных на  образцы  — колонны 
двутаврового сечения (рис. 8).

Рис. 7. Методы термического анализа (ТА)
Fig. 7. Thermal analysis (TA) methods
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В процессе проведения испытаний регистриро­
вались следующие показатели:

●● время наступления предельного состояния 
образца (достижение критической темпера­
туры); 

●● за предельное состояние принято достижение 
стальной поверхности образца критической 
температуры в 500 °С в среднем в контрольных 
точках образца;

●● поведение огнезащитного состава (вспучива­
ние, обугливание, отслоение, появление трещин, 
выделение дыма, продуктов горения и т.д.).

Метод оценки кратности вспучивания
Коэффициент вспучивания огнезащитных покры­

тий определялся по методике оценки огнезащитных 
свойств покрытий в зависимости от сроков их эксплу­
атации, разработанной ФГБУ ВНИИПО МЧС России. 
Образец покрытия размером 200 × 200 мм помещают 
в термошкаф при температуре 600 °С и выдерживают 
в течение 5 мин для получения вспученного слоя. 
Коэффициент вспучивания  Kвс  определяется как 
отношение толщины вспученного слоя h к исходной 
толщине покрытия h0:

Kвс = h/h0.	 (1)

Измерение h и h0 проводится в сечениях пяти 
образцов. Коэффициент вспучивания определяется 
как среднеарифметическое пяти измерений.

Образцы для испытаний
Для проведения экспериментального исследо­

вания поведения вспучивающихся составов в усло­

виях огневого воздействия были использованы 
составы, отличающиеся связующими компонен­
тами, отвердителями и т.п., приведенные в табл. 1.

Результаты испытаний
Результаты экспериментальных исследований 

в  соответствии с  заявленным планом приведены 
в табл. 2–5 и на рис. 6–20.

Фото огневых испытаний образцов приведены 
на рис. 9–14.

Графики результатов термического анализа 
образцов 15–17 приведены на рис. 15–17.

Обсуждение результатов

Огнезащитные вспучивающиеся краски при 
нагревании выделяют парообразные вещества 

Рис. 8. Малогабаритная печь
Fig. 8. Small-size furnace

Таблица 2. Характеристики и эффективность огнезащитных 
материалов для стальных конструкций 
Table 2. Characteristics and effectiveness of fire retardant mate­
rials for steel structures
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1 6,3 50 268 45 (ПТМ 5,8)
45 (PTM 5.8)

2 2 16 220 30 (ПТМ 5,8)
30 (PTM 5.8)

3 2 17 230 15 (ПТМ 3,4)
15 (PTM 3.4)

Таблица 1. Перечень используемых образцов
Table 1. List of specimens used

Образец №
Specimen No.

Краткая характеристика
Brief description

1

Огнезащитный состав на водной основе 
с отвердителем
Water based fire retardant composition with 
hardener

2
Огнезащитный состав на водной основе
Water based fire retardant composition

3
Огнезащитный состав на водной основе
Water based fire retardant composition
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Таблица 3. Теплофизические характеристики огнезащитных 
материалов для стальных конструкций до терморазложения
Table 3. Thermo-physical characteristics of flame retardant 
materials for steel structures before thermal decomposition
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1 716 40 0,954 0,202 0,212

2 1395 20 1,875 0,385 0,205
3 1385 20 2,384 0,444 0,186

Таблица 4. Теплофизические характеристики огнезащитных 
материалов для стальных конструкций при температуре 200 °С
Table 4. Thermo-physical characteristics of flame retardant mate­
rials for steel structures at 200 °C
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2 988 40 1,52 0,29 0,195
3 592 40 2,32 0,31 0,134

Таблица 5. Теплофизические характеристики огнезащитных 
материалов для стальных конструкций после терморазложения
Table 5. Thermo-physical characteristics of flame retardant 
materials for steel structures after thermal decomposition
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2 92 80 0,227 0,066 0,291
3 75 80 0,412 0,212 0,284

стью предотвращает быстрый нагрев защищаемых  
конструкций [30, 31].

В  результате проведенного анализа можно 
сделать следующие выводы: для образца  1 
и образца 2 характерны ярко выраженные экзо­
термические эффекты в  начале теплового воз­
действия, что характеризует активные термо­

Рис. 9. Образец 1 до испытаний
Fig. 9. Specimen 1 before testing

и  образуют на  защищаемой поверхности тонкий 
непрозрачный слой, который вспучивается при опре­
деленной температуре, и толщина его увеличивается 
в 50–100 раз. Вспучивающиеся краски на водной 
и  органической основе наносят на  поверхность 
стальных конструкций слоем толщиной до 3 мм. 
При температуре 170–220 °С покрытие вспучива­
ется с  образованием пористого термоизоляцион­
ного слоя. Пористый слой с низкой теплопроводно­
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Рис. 10. Образец 1 после испытаний
Fig. 10. Specimen 1 after testing

Рис. 12. Образец 2 после испытаний
Fig. 12. Specimen 2 after testing

Рис. 11. Образец 2 до испытаний
Fig. 11. Specimen 2 before testing

Рис. 13. Образец 3 до испытаний
Fig. 13. Specimen 3 before testing
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окислительные процессы, которые приводят 
к  образованию неустойчивой структуры. При 
этом для образца 3 характерно наличие меньшего 
количества выделяемого тепла на  начальном 
этапе, при этом наблюдаются эндотермические 
эффекты, определяющие устойчивость структуры 
вспученного слоя, а  также охлаждение поверх­
ности. В табл. 6 приведено детальное описание 
результатов термического анализа.

Поведение составов в процессе эксперимента 
различается, но в интервалах 35–100 °С происходят 
размягчение, разогрев, термоокислительный про­
цесс; в интервалах 100–185 °С — экзотермические 
эффекты; в интервалах 185–255 °С — эндотермиче­
ские эффекты, от 255 °С — стабилизация. Поэтому 
для математического моделирования можно реко­
мендовать данные интервалы.

Исследуемыми теплофизическими характери­
стиками в рамках оценки поведения огнезащитных 
материалов являются: λ (коэффициент теплопрово­
дности), ρ (плотность), Cp (теплоемкость) с учетом 
высокотемпературного воздействия. На основании 
полученных результатов можно заключить, что 
наиболее стабильный с точки зрения поверхност­
ной структуры состав (образец 1) имеет наимень­
шую температуропроводность при сравнительно 
схожих с другими составами значениях теплоем­
кости.

Рис. 14. Образец 3 после испытаний
Fig. 14. Specimen 3 after testing

Рис. 16. Термический анализ образца 2
Fig. 16. Thermal analysis of Specimen 2

Рис. 17. Термический анализ образца 3
Fig. 17. Thermal analysis of Specimen 3

T, ℃

Рис. 15. Термический анализ образца 1
Fig. 15. Thermal analysis of Specimen 1
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Таблица 6. Тепловые эффекты реакции терморазложения
Table 6. Thermal effects of the thermal decomposition reaction

Образец №
Specimen No.

Температурный интервал, °С
Temperature range, °C

20–100 100–200 200–300 300–400

Тепловой эффект химической реакции Q, Дж
Heat effect of the chemical reaction Q, J

1 8,5 –7,3 8,5 40,5

2 9,3 4,2 12,7 15,3

3 12,34 6,71 18,2 8,2

∆T, ℃

T, ℃

Δm, мг 
Δm, mg
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Эти результаты коррелируются с полученными 
ранее данными (ДТА и  предел огнестойкости). 
Кроме того, данный образец обладает наиболь­
шей кратностью вспучивания, что при устойчивой 
структуре обеспечивает наибольшую огнестойкость 
(не менее 35 мин). Полученные результаты исполь­
зуются для математического моделирования огне­
защитных материалов, обладающих заданными экс­
плуатационными свойствами.

Математическое моделирование

В результате экспериментальных исследований 
проведена аппроксимация данных на  основании 
математического моделирования. Для определения 
распределения температур внутри стальной кон­
струкции и слоя огнезащиты решается нестационар­
ное одномерное уравнение теплопроводности:

ρ λ ,
τ
T Tc

y y
� �� � �

� � �� � �� �
	 (2)

где ρ — плотность материала, кг/м3;
с — удельная теплоемкость материала, Дж/(кг·К);
Т — температура, К;
λ — коэффициент теплопроводности материала, 
Вт/(м·К);
τ — время, с;
у  — координата, направленная по  толщине 
стальной конструкции и слоя (сухого или вспу­
ченного) огнезащитного материала, м.
Уравнение (1) решается численным методом 

контрольных объемов.
Используется неявная конечно-разностная схема 

и метод продольной прогонки.
Величина предела огнестойкости выражается 

в качестве показателя времени (∂τ), когда темпера­
тура стальной конструкции достигнет критического 
значения 500 °С.

Предполагаем идеальный тепловой контакт 
между слоями стальной конструкции и огнезащит­
ного состава, что является наиболее опасным вари­
антом с точки зрения нагрева стальной конструкции. 
Впервые применен подобный подход с использова­
нием теплотехнических параметров огнезащитных 
материалов для стальных конструкций.

Значение толщины сухого слоя огнезащитного 
материала по оси у  сначала задается постоянным 
в зависимости от приведенной толщины металла. 
При достижении температурой огнезащитного мате­
риала величины начала вспучивания вышеуказан­
ный шаг изменяется в области вспученного слоя. 
Величина шага по времени определяется из числа 
Куранта.

Приведенная математическая задача впервые 
решалась методом компьютерного моделирования. 

Была написана компьютерная программа на языке 
программирования ФОРТРАН. 

В  результате численных экспериментов для 
трех огнезащитных покрытий с различной тол­
щиной сухого слоя δc, являющейся координа­
той y из уравнения теплопроводности (1), были 
получены зависимости температуры стальной 
конструкции от  времени с  начала испытаний 
при разных пределах огнестойкости. Вышеука­
занные зависимости позволили получить зави­
симости толщины сухого слоя огнезащитных 
составов от требуемого предела огнестойкости R. 
При аппроксимации данных решений уравнения 
теплопроводности получены уравнения номо­
грамм, представленные в табл. 7.

Номограмма прогрева защищенных 
стальных конструкций с огнезащитными 
покрытиями различной толщины
Определение теплотехнических и высокотемпе­

ратурных характеристик огнезащитных вспучива­
ющихся красок для стальных конструкций связано 
с построением номограмм прогрева защищенных 
стальных конструкций с огнезащитными вспучива­
ющимися красками различной толщины в зависи­
мости от приведенной толщины металла.

На основании математического моделирования 
получены номограммы зависимостей толщины 
сухого слоя от требуемого предела огнестойкости 
при заданных теплофизических характеристиках 
исследуемых составов (рис. 18–23).

На основании математического моделирова­
ния получены для трех огнезащитных покрытий 
зависимости температуры стальной конструкции 
от времени с начала испытаний при разных пре­
делах огнестойкости, а также номограммы зави­

Таблица 7. Уравнения номограмм требуемой толщины 
сухого слоя в зависимости от предела огнестойкости
Table 7. Equations of nomograms of the  required thickness  
of the dry layer depending on the fire resistance limit

Образец №
Specimen No.

Уравнение зависимости толщины сухого 
слоя огнезащитного материала от требу­

емого предела огнестойкости конструкции
Equation showing dependence between 

the thickness of the dry layer of 
the fireproofing material and the required fire 

resistance limit of the structure

1 δ
с

4 10 0 1737 0 4752
4 2R R, ,

δd R R4 10 0 1737 0 4752
4 2

. .

2 δ
с

10 0 0534 0 4368
4 2R R, ,

δd R R10 0 0534 0 4368
4 2

. .

3 δ
с

2 10 0 0975 0 6956
4 2R R, ,

δd R R2 10 0 0975 0 6956
4 2

. .
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симостей толщины сухого слоя огнезащитных 
составов от  требуемого предела огнестойкости 
(рис. 18–23).

Достоверность расчетного метода подтвержда­

ется сопоставлением результатов расчета темпера­
тур стальной конструкции с ее экспериментальными 
значениями (рис. 19, 25–28). Погрешность расчета 
не превышала 2 %. 

Рис. 18. Зависимости температур от времени: Краска Терма, 
стальная конструкция с  приведенной толщиной 3,4  мм. 
Огнезащитная эффективность 15 мин
Fig. 18. Temperature-time dependencies: Terma paint, steel con­
struction with a thickness of 3.4 mm. Fire safety efficiency of 15 min
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Рис. 21. Огнезащитная эффективность 60 мин 
Fig. 21. Fire safety efficiency of 60 min
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Рис. 19. Огнезащитная эффективность 30 мин
Fig. 19. Fire safety efficiency of 30 min
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Рис. 22. Огнезащитная эффективность 90 мин
Fig. 22. Fire safety efficiency of 90 min
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Рис. 20. Огнезащитная эффективность 45 мин
Fig. 20. Fire safety efficiency of 45 min
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Рис. 23. Огнезащитная эффективность 120 мин
Fig. 23. Fire safety efficiency of 120 min
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Рис. 24. Огнезащитная эффективность 150 мин
Fig. 24. Fire safety efficiency of 150 min

Рис. 28. Зависимость толщины сухого слоя огнезащитного 
состава на водной основе с отвердителем, нанесенным на сталь­
ную конструкцию с приведенной толщиной 3,4 мм, от огне­
защитной эффективности: расчет: δс = –4 ∙ 10–4R2 + 0,1737R +  
+ 0,4752, достоверность аппроксимации 0,9992; где δс — тол­
щина сухого слоя, мм; R — огнезащитная эффективность, мин;  
□ — эксперимент (R = 35 мин) 
Fig. 28. Dependence between the  thickness of the dry layer of 
a water-based fire retardant composition with a hardener, applied to 
a steel structure with a given thickness of 3.4 mm and the fire safety 
efficiency analysis: δd = –4 ∙ 10–4R2 + 0.1737R + 0.4752, reliability of 
approximation is 0.9992; where δd is dry layer thickness, mm; R is 
the fire safety efficiency, min;  □ — experiment (R = 35 min)

Рис. 27. Зависимости температур от времени с начала пожара:  
1 — температура «стандартного» пожара; температура сталь­
ной конструкции с приведенной толщиной 3,4 мм, обработан­
ной огнезащитным составом на водной основе с отвердителем, 
при огнезащитной эффективности, расчет: 2 — 15 мин; 3 — 
35; 4 — 45; 5 — 60; 6 — 90; 7 — 120; 8 — 150; эксперимент:  
□ — 35 мин
Fig. 27. Dependences between temperatures andthe time from 
the beginning of the fire: 1 —  “standard” fire temperature; the tem­
perature of the steel structure with a given thickness of 3.4 mm, 
treated with a water-based flame retardant composition with a hard­
ener to ensure the fire safety efficiency: calculation: 2 — 15 min; 
3 — 35; 4 — 45; 5 — 60; 6 — 90; 7 — 120; 8 — 150; experiment:  
□ — 35 min

Tкр = 500 °С / Tcr = 500 °C

Рис. 25. Зависимости температур от времени с начала пожара: 
1 — температура «стандартного» пожара; температура сталь­
ной конструкции с приведенной толщиной 3,4 мм, обрабо­
танной огнезащитным составом Терма, при огнезащитной 
эффективности, расчет: 2 — 15 мин; 3 — 30; 4 — 45; 5 — 
60; 6 — 90; 7 — 120; 8 — 150; эксперимент: □ — 30 мин
Fig. 25. Dependences between temperatures and the time from 
the beginning of the fire: 1 — “standard” fire temperature; tempera­
ture of the steel structure with a given thickness of 3.4 mm, treated 
with a fire retardant composition of Terma, for the following cases 
of the fire safety efficiency, calculation: 2 — 15 min; 3 — 30; 4 — 
45; 5 — 60; 6 — 90; 7 — 120; 8 — 150; experiment: □ — 30 min
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Рис. 26. Зависимость толщины сухого слоя огнезащитного 
состава Терма, нанесенного на стальную конструкцию с при­
веденной толщиной 3,4 мм, от огнезащитной эффективности, 
расчет: δс = –10–4R2 + 0,0534R + 0,4368, достоверность аппрок­
симации 0,9991, где δс — толщина сухого слоя, мм; R — огне­
защитная эффективность, мин; □ — эксперимент (R = 30 мин) 
Fig. 26. Dependence between the thickness of the dry layer of 
Terma flame retardant composition, applied to the steel structure 
with a reduced thickness of 3.4 mm, and the fire safety efficiency: 
calculation: δd = –10–4R2 + 0.0534R + 0.4368, reliability of approx­
imation 0.9991; where δd is the dry layer thickness, mm; R is 
the fire safety efficiency, min; □ — experiment (R = 30 min)

τ, мин / τ, min

δс, мм / δd, mm

R, мин / R, min

Выводы

1. По итогам проведенных исследований впер­
вые получены фундаментальные взаимосвязи 
динамики изменения структуры огнезащитного 
материала при тепловом воздействии на  предел 
огнестойкости строительной конструкции на основе 
выбора функционального критерия. 
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2. С  учетом зависимости теплофизических 
характеристик (теплоемкости, теплопроводности) 
от структуры (плотность, кратность вспучивания) 
и температуры огнезащитного покрытия полимерных 
композиционных материалов (огнезащитных матери­
алов на основе полимерного связующего) разработан 
новый подход с внедрением «функции огнезащит­
ного материала».

3. На  основании экспериментальных иссле­
дований свойств и  эффективности огнезащитных 
материалов разработана математическая модель 
зависимости толщины сухого слоя огнезащитных 
материалов от  требуемого предела огнестойкости 

и  теплофизических характеристик огнезащитных 
материалов, а также приведены номограммы зависи­
мостей толщины сухого слоя огнезащитных матери­
алов от огнезащитной эффективности полимерных 
композиционных материалов функционального 
назначения (огнезащитных материалов).

4. Полученные результаты в дальнейшем позво­
лят прогнозировать эффективность огнезащитных 
материалов исходя из заданных параметров (функ­
циональных критериев). Новый подобный метод 
позволит решить теплотехническую задачу для 
оценки пределов огнестойкости различных типов 
строительных конструкций. 
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