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АННОТАЦИЯ
Введение. При расчете времени блокирования путей эвакуации монооксидом углерода критериями на-
ступления вышеуказанного времени могут являться критические величины парциальной плотности газа, 
токсодозы или относительной массы карбоксигемоглобина в крови человека. Однако сравнительный анализ 
влияния выбора критерия на время блокирования путей эвакуации этим газом не проводился.

Цели и задачи. Целью статьи является сравнительная оценка времен блокирования путей эвакуации моно-
оксидом углерода, полученных с использованием различных методов определения критических значений 
плотности монооксида углерода. Для ее достижения проведены экспериментальные исследования процесса 
горения различных твердых и жидких горючих веществ и материалов в маломасштабной экспериментальной 
установке и на их основе выполнены расчеты времен блокирования путей эвакуации монооксидом угле рода. 

Теоретические основы. Поступление монооксида углерода при попадании в организм ингаляционным 
способом во время пожара рассчитывается по экспериментально измеренным парциальным плотностям 
СО с помощью математических моделей расчета токсодозы этого газа и образования карбоксигемоглобина 
в крови человека.

Результаты и их обсуждение. Представлены экспериментальные зависимости от времени испытаний средне-
объемной плотности монооксида при горении оболочки кабелей ПВХ «low smoke», древесины (сосна), шоко-
лада, масла трансформаторного и масла растительного. Получены теоретические зависимости от времени 
величин токсодозы, полученной человеком, а также массовой концентрации карбоксигемоглобина в крови 
человека для рассмотренных горючих материалов. Обнаружено, что времена блокирования путей эвакуации 
монооксидом углерода могут существенно отличаться друг от друга при использовании различных методов 
определения критических значений плотности монооксида углерода.

Выводы. В нормативных методах расчета времени блокирования путей эвакуации монооксидом углерода 
использование величины критической парциальной плотности СО может привести к существенному за-
вышению вышеуказанного времени, что приведет к недооценке токсического воздействия на человека 
во время его эвакуации. Поэтому необходимо применять все рассмотренные в статье методы с целью  выбора 
минимальной величины вышеуказанного времени.
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Введение

Гибель людей во время пожара происходит в основ-
ном из-за отравления токсичными газами [1–10]. 
Поэтому повышение надежности и достоверности 
расчета времени блокирования путей эвакуации ток-
сикантами является актуальной проблемой. 

Время блокирования путей эвакуации токсичным 
газом принимается равным промежутку времени 
от начала пожара до момента времени, когда плот-
ность этого газа достигнет ее критического значения 
для человека на высоте рабочей зоны на путях эва-
куации [11]. 

Существуют другие  методы, основанные на крити-
ческих величинах следующих параметров: 

 ● по величине токсодозы, полученной человеком 
во время эвакуации [12, 13];

 ● в случае монооксида углерода по величине от-
носительной массы карбоксигемоглобина в кро-
ви человека [14, 15].
Однако сравнительный анализ влияния выбора 

критических величин парциальной плотности газа, 
токсодозы или относительной массы карбоксигемо-
глобина в крови человека в случае монооксида угле-
рода, как наиболее опасного токсиканта, на время 
блокирования путей эвакуации этим газом не прово-
дился. 

В работах [16, 17] показано, что полученные 
в мало масштабной экспериментальной установке 
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ABSTRACT
Introduction. Critical values of the partial density of gas, the toxic dose or relative mass of carboxyhemoglobin 
in human blood serve as the criteria determining the time to the blocking of escape routes due to the presence 
of carbon monoxide. However, the comparative analysis of the effect produced by the selected criterion on the time 
to the blocking of escape routes due to the presence of this gas has not been conducted yet.

Goals and objectives. The purpose of the article is to compare the values of the time to the blocking of escape 
routes by carbon monoxide obtained using various methods of determining the critical values of the carbon 
monoxide density. Towards this end, experimental studies on combustion processes of various solid and liquid 
combustible substances and materials were conducted in a small-scale test unit, and calculations of the time to 
the blocking of escape routes with carbon monoxide were made on their basis.

Theoretical fundamentals. The amount of carbon monoxide, inhaled during a fi re, is calculated using experi-
mentally measured partial densities of CO and mathematical models designated for the calculation of the toxic 
dose of this gas and formation of carboxyhemoglobin in human blood.

Results and discussion. Experimental dependencies between the testing time and medium-volume densities of 
monoxide emitted during the combustion of the “low smoke” PVC cable sheathing, timber (pinewood), chocolate, 
transformer oil and vegetable oil are presented. The authors obtained theoretical dependencies between 
the toxic dose and mass concentration of carboxyhemoglobin in human blood, on the one hand, and the time for 
the combustible materials, analyzed in the article. It has been found that the values of time to the blocking of 
escape routes due to the presence of carbon monoxide may differ signifi cantly depending on the method used 
to determine the critical values of the carbon monoxide density.

Conclusions. Standard methods, used to calculate the time to the blocking of escape routes due to the presence 
of carbon monoxide, employ the value of the critical partial density which may involve a substantial overestimation 
of the above time frame and the underestimation of the toxic effect produced on a person in the process of his/
her evacuation. Therefore, it is necessary to apply all methods, discussed in the article, to select the minimum 
value of the above time frame.
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зависимости среднеобъемных величин парциальной 
плотности токсичного газа от среднеобъемной пар-
циальной плотности кислорода справедливы в усло-
виях крупномасштабного пожара в помещении. По-
этому на примере монооксида углерода выполним 
сравнение различных методов расчета времен бло-
кирования путей эвакуации с использованием экспе-
риментальных зависимостей парциальной плотности 
этого газа от времени, полученных при горении раз-
личных твердых и жидких горючих веществ и мате-
риалов в маломасштабной экспериментальной уста-
новке.

Целью статьи является сравнительная оценка вре-
мен блокирования путей эвакуации монооксидом 
углерода, полученных с использованием различных 
методов определения критических значений выше-
указанных параметров.

Для достижения поставленной цели: 
 ● проведены в маломасштабной эксперименталь-

ной установке экспериментальные исследования 
параметров процесса горения различных горю-
чих материалов; 

 ● с помощью полученных экспериментальных за-
висимостей парциальной плотности монооксида 
углерода от времени выполнены расчеты времен 
блокирования путей эвакуации монооксидом 
углерода с использованием вышеуказанных под-
ходов. 

Критические значения параметров процесса 
распространения монооксида углерода 

в помещении 

Критическая концентрация монооксида углерода 
при попадании в организм ингаляционным способом 
равна ρСО,кр = 1,16 ∙ 10–3 кг/м3 [11].

Расчет токсодозы проводится с использованием 
выражения [12, 13]: 

 
CO

0

,D d
τ

= ρ τ∫  (1)

где τ — время от начала горения, с; D — токсодоза, 
кг·с/м3; ρСО — парциальная плотность СО, кг/м3. 

Критическое значение токсодозы равно Dкр =
= 0,0408 кг·с/м3 [13]. 

Расчет массовой доли карбоксигемоглобина в кро-
ви проводится с использованием выражения [14, 15]:

 

Hb
HbCO CO

Hb CO 0

1 ,Wk WM d
M n

τ⎛ ⎞μ
= + ρ τ⎜ ⎟μ⎝ ⎠ ∫  (2)

где MHbCO = MHbCO/MHb — массовая доля карбокси-
гемоглобина; MHbCO — масса карбоксигемоглобина, 
г; MHb — масса гемоглобина, г; W — объемная ско-
рость вентиляции легких, л/мин; kW — коэффициент, 

равный отношению объемного расхода воздуха, по-
ступающего в альвеолы легких, к объемной скорости 
вентиляции легких; μHb — молекулярная масса ге-
моглобина, кг/кмоль; μСО — молекулярная масса СО, 
кг/кмоль; n — число молекул СО в одной молекуле 
карбоксигемоглобина. 

Критическое для человека значение массовой 
доли карбоксигемоглобина принимаем равным 
MHbCO = 0,2 (легкое отравление) [14, 15].

Маломасштабная экспериментальная 
установка и методика проведения 

экспериментов

Схема экспериментальной установки представ-
лена на рис. 1 [17]. 

Камера сгорания 1 объемом 3·10–3 м3 изолирова-
на теплоизоляционным материалом и объединена 
с экспозиционной камерой 2 переходным рукавом 3, 
имеющим шиберную задвижку для отсечения каме-
ры сгорания от экспозиционной камеры. Электро-
нагревательная панель 4, держатель образца 5 
и термо пара для контроля температуры в объеме 
камеры расположены в вышеуказанной камере. 

Держатель для образцов представляет собой ме-
таллическую кювету размером 0,1 × 0,1 м, находящу-
юся на весах 7 (погрешность ± 1 мг), расположенных 
на специальном столе, имеющем подвижную основу. 

Камера экспозиции имеет кубическую форму 
объемом 0,5887 м3, переходящую кверху в конус. 
Шиберные отверстия для поддува воздуха располо-
жены с двух противоположных стенок камеры.

1 11

10

2

5

3

4

5

56 7 8 9

Рис. 1. Схема модифицированной экспериментальной уста-
новки: 1 — камера сгорания; 2 — переходной рукав; 3 — экс-
позиционная камера; 4 — лазерный модуль; 5 — термопары; 
6 — зонд отбора газа; 7 — вентилятор; 8 — фоточувствитель-
ный элемент; 9 — электронные весы; 10 — держатель образ-
ца; 11 — электронагревательный излучатель [17]
Fig. 1. The layout of a modifi ed experimental unit: 1 — combustion 
chamber; 2 — adapter hose; 3 — exposure chamber; 4 — laser 
module; 5 — thermocouples; 6 — gas sampling probe; 7 — fan; 
8 — photosensitive element; 9 — electronic scales; 10 — sample 
holder; 11 — electric heating radiator [17]
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Для регистрации плотности падающего теплово-
го потока на испытуемый образец используется во-
доохлаждаемый датчик типа Гордона и милливольт-
метр. Измерения данного параметра проводятся 
с погрешностью не более 8 %.

Измерение концентрации оксида углерода (диа-
пазон от 0 до 1 % об., погрешность не более 10 %) 
со снятием показаний каждые 5 секунд проводится 
газоанализатором, фиксирующим, кроме того, значе-
ния концентраций кислорода и диоксида углерода.

Испытания проводились в режиме пламенного го-
рения образца при температуре от 500 до 750 °С в ка-
мере сгорания. При этом плотность падающего тепло-
вого потока находилась в пределах от 45 до 60 кВт/ м2. 
Пламенное горение, в отличие от режима тления, 
обеспечивало высокую скорость распространения 
продуктов терморазложения по объему экспозицион-
ной камеры экспериментальной установки. 

После прогрева нагревательным элементом каме-
ры сгорания до достижения рабочей температуры при 
требуемой плотности падающего на образец тепло-
вого потока испытуемый материал помещают в дер-
жатель образца, закрывают дверцу камеры сгорания 
и открывают переходной рукав для поступления про-
дуктов горения в экспонируемую камеру. В процессе 
испытаний необходимые параметры каждые 5 секунд 
записываются на персональный компьютер с помо-
щью регистрирующих программ.

Исходные данные 

В экспериментах исследовались следующие го-
рючие материалы, находящиеся в зданиях различно-
го функционального назначения:

 ● твердая горючая нагрузка: оболочки кабелей 
ПВХ «low smoke» (с пониженным дымовыделе-
нием), древесина (сосна), шоколад (горький, 
55 % какао-продуктов);

 ● жидкая горючая нагрузка: масло трансформатор-
ное, масло растительное.
Перед испытаниями образцы материала нареза-

лись под размеры держателя образца (вкладыша) 
10 × 10 см. Из кабеля вынималась его металлическая 
часть. Далее образцы кондиционировались, взвеши-
вались и помещались в специальный держатель об-
разцов (вкладыш).

При спокойном дыхании, когда нет дополнитель-
ных воздействий на дыхательный центр, принимаем 
для взрослого человека весом 75 кг W = 5,25 л/мин 
и kW = 0,7 [18].

Диффузионная способность легких по СО равна 
[18]:

 ● при спокойном дыхании: Dл.СО = 20 мл/(мм рт. 
ст.·мин);

 ● при физической нагрузке: Dл.СО = 60 мл/(мм рт. 
ст.·мин).

Расчеты проводим для взрослого человека и ре-
бенка 6 лет.

Принимаем, что в организме взрослого человека 
средняя масса гемоглобина в крови человека состав-
ляет 708,8 г [19], у ребенка 6 лет — 204,8 г [19].

Молекулярная масса гемоглобина составляет 
μHb = 68 800 кг/кмоль [19, 20], для СО — μСО =
= 28 кг/ кмоль.

Результаты экспериментальных 
и теоретических исследований

Экспериментальные зависимости от времени ис-
пытаний среднеобъемной плотности монооксида 
углерода представлены на рис. 2, токсодозы СО — 
на рис. 3 и массовой доли карбоксигемоглобина — 
на рис. 4.

Из рис. 2–4 видно, что во всех экспериментах 
 величины парциальной плотности СО, токсодозы 
и массовой доли карбоксигемоглобина достигали их 
крити ческих значений. 

На рис. 5 и в таблице приведены времена блоки-
рования путей эвакуации монооксидом углерода, 
полученные с использованием различных методов 
их определения для испытываемых горючих матери-
алов.

Достижение критических для человека значений 
параметров в вышеуказанных методах определяется 
по следующим параметрам: 

 ● парциальная плотность СО [11];
 ● величина токсодозы СО (уравнение (1)) [12, 13];
 ● относительная масса карбоксигемоглобина 

в крови человека (уравнение (2)) [14, 15].
Из рис. 5 и таблицы видно, что при горении дре-

весины определение времени блокирования путей 
эвакуации монооксидом углерода с использованием 
величины критической парциальной плотности 
СО может привести к существенной недооценке 
токси ческого воздействия на человека во время его 
эвакуации. 

Например, вышеуказанное время в 2,3 раза боль-
ше времени, полученного при проведении расчета 
по величине относительной массы карбоксигемогло-
бина в крови взрослого человека, и в 2,1 раза –– 
по сравнению с применением величины токсодозы.

В соответствии с нормативной литературой 
(«Свод правил. СП 11.13130.2009. Места дислокации 
подразделений пожарной охраны. Порядок и методи-
ка определения. Приложение А (рекомендуемое). 
Методика определения необходимого времени эваку-
ации людей из помещения при пожаре») критические 
концентрации токсичных продуктов горения прини-
маются по литературным данным для условий одно-
разового воздействия на эвакуирующихся в течение 
нескольких минут при средних физических нагрузках 
и по критерию сохранения ими способности реально 
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Рис. 2. Экспериментальные зависимости среднеобъемной 
парциальной плотности монооксида углерода от времени ис-
пытаний: 1 — кабели «low smoke»; 2 — древесина (сосна); 
3 — масло трансформаторное; 4 — масло растительное; 5 — 
шоколад; 6 — критическое значение ρCO.кр

Fig. 2. Experimental dependencies between the medium-volume 
partial density of carbon monoxide and the testing time: 1 — “low 
smoke” cables; 2 — timber (pine wood); 3 — transformer oil; 
4 — vegetable oil; 5 — chocolate; 6 — critical value of ρCO.cr
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Рис. 3. Экспериментальные зависимости токсодозы моноок-
сида углерода от времени испытаний: 1 — кабели «low smoke»; 
2 — древесина (сосна); 3 — масло трансформаторное; 4 — 
масло растительное; 5 — шоколад; 6 — критическое значение 
ρCO.кр

Fig. 3. Experimental dependencies between the toxic dose of 
carbon monoxide and the testing time: 1 — “low smoke” cables; 
2 — timber (pine wood); 3 — transformer oil; 4 — vegetable oil; 
5 — chocolate; 6 — critical value of ρCO.cr
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Рис. 4. Зависимости массовой доли карбоксигемоглобина 
от времени с начала испытаний в случае среднего взрослого 
человека: 1 — кабели «low smoke»; 2 — древесина (сосна); 
3 — масло трансформаторное; 4 — масло растительное; 5 — 
шоколад; 6 — критическое значение MHbCO
Fig. 4. The dependence between the mass content of 
carboxyhemoglobin and the time as of the beginning of the testing 
process in the case of an average adult: 1 — “low smoke” cables; 
2 — timber (pine wood); 3 — transformer oil; 4 — vegetable oil; 
5 — chocolate; 6 — critical value of MHbCO
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Рис. 5. Времена блокирования путей эвакуации монооксидом 
углерода, полученные для испытываемых горючих материалов 
с использованием различных параметров: 1 — парциальная 
плотность СО; 2 — токсодоза СО; 3 –– массовая доля карбок-
сигемоглобина (средний взрослый человек); 4 –– массовая 
доля карбоксигемоглобина (ребенок 6 лет)
Fig. 5. Values of the time to the blocking of escape routes due to 
the presence of carbon monoxide obtained for the tested 
combustible materials using various parameters: 1 — partial 
density of CO; 2 — toxic doses of CO; 3 — mass content of 
carboxyhemoglobin (average adult); 4 — mass content of 
carboxyhemoglobin (6 year old child)
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оценивать окружающую обстановку, уверенно при-
нимать и выполнять соответствующие решения. По-
этому в случае горения древесины величину парци-
альной плотности СО нельзя использовать в качестве 
критерия наступления времени блокирования путей 
эвакуации по СО.

Выводы

В нормативных методах расчета времени блоки-
рования путей эвакуации монооксидом углерода (Ме-
тодика определения расчетных величин пожарного 
риска в зданиях, сооружениях и строениях различных 

классов функциональной пожарной опасности. 
 Приложение к приказу МЧС России от 30.06.2009 
№ 382. – М. : МЧС России, 2009. 45 с. и др.) исполь-
зование величины критической парциальной плот-
ности СО может привести к существенному завыше-
нию вышеуказанного времени, что приведет 
к недооценке токсического воздействия на человека 
во время его эвакуации. Поэтому необходимо приме-
нять все рассмотренные в статье методы, основанные 
на расчетах парциальной плотности СО, токсодозы 
СО и массовой доли карбоксигемоглобина в крови 
человека. 
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